2024
NeRF as A Non-Distant Environment Emitter in Physics-Based Inverse Rendering cgcv
Jingwang Ling, Ruihan Yu, Feng Xu, Chun Du, Shuang Zhao
ACM SIGGRAPH 2024 (conference-track full paper), July 2024
Physics-based inverse rendering enables joint optimization of shape, material, and lighting based on captured 2D images. To ensure accurate reconstruction, using a light model that closely resembles the captured environment is essential. Although the widely adopted distant environmental lighting model is adequate in many cases, we demonstrate that its inability to capture spatially varying illumination can lead to inaccurate reconstructions in many real-world inverse rendering scenarios. To address this limitation, we incorporate NeRF as a non-distant environment emitter into the inverse rendering pipeline. Additionally, we introduce an emitter importance sampling technique for NeRF to reduce the rendering variance. Through comparisons on both real and synthetic datasets, our results demonstrate that our NeRF-based emitter offers a more precise representation of scene lighting, thereby improving the accuracy of inverse rendering.
2023
PSDR-Room: Single Photo to Scene using Differentiable Rendering cgcv
Kai Yan, Fujun Luan, Miloš Hašan, Thibault Groueix, Valentin Deschaintre, Shuang Zhao
ACM SIGGRAPH Asia 2023 (conference-track full paper), December 2023
A 3D digital scene contains many components: lights, materials and geometries, interacting to reach the desired appearance. Staging such a scene is time-consuming and requires both artistic and technical skills. In this work, we propose PSDR-Room, a system allowing to optimize lighting as well as the pose and materials of individual objects to match a target image of a room scene, with minimal user input. To this end, we leverage a recent path-space differentiable rendering approach that provides unbiased gradients of the rendering with respect to geometry, lighting, and procedural materials, allowing us to optimize all of these components using gradient descent to visually match the input photo appearance. We use recent single-image scene understanding methods to initialize the optimization and search for appropriate 3D models and materials. We evaluate our method on real photographs of indoor scenes and demonstrate the editability of the resulting scene components.
Neural-PBIR Reconstruction of Shape, Material, and Illumination cv
Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin Huang, Shuang Zhao, Zhao Dong
International Conference on Computer Vision (ICCV), October 2023
Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise.
2022
Physics-Based Inverse Rendering using Combined Implicit and Explicit Geometries cgcv
Guangyan Cai, Kai Yan, Zhao Dong, Ioannis Gkioulekas, Shuang Zhao
Computer Graphics Forum (Eurographics Symposium on Rendering), 41(4), July 2022
Mathematically representing the shape of an object is a key ingredient for solving inverse rendering problems. Explicit representations like meshes are efficient to render in a differentiable fashion but have difficulties handling topology changes. Implicit representations like signed-distance functions, on the other hand, offer better support of topology changes but are much more difficult to use for physics-based differentiable rendering. We introduce a new physics-based inverse rendering pipeline that uses both implicit and explicit representations. Our technique enjoys the benefit of both representations by supporting both topology changes and differentiable rendering of complex effects such as environmental illumination, soft shadows, and interreflection. We demonstrate the effectiveness of our technique using several synthetic and real examples.
2021
Unified Shape and SVBRDF Recovery using Differentiable Monte Carlo Rendering cgcv
Fujun Luan, Shuang Zhao, Kavita Bala, Zhao Dong
Computer Graphics Forum (Eurographics Symposium on Rendering), 40(4), July 2021

Reconstructing the shape and appearance of real-world objects using measured 2D images has been a long-standing inverse rendering problem. In this paper, we introduce a new analysis-by-synthesis technique capable of producing high-quality reconstructions through robust coarse-to-fine optimization and physics-based differentiable rendering.

Unlike most previous methods that handle geometry and reflectance largely separately, our method unifies the optimization of both by leveraging image gradients with respect to both object reflectance and geometry. To obtain physically accurate gradient estimates, we develop a new GPU-based Monte Carlo differentiable renderer leveraging recent advances in differentiable rendering theory to offer unbiased gradients while enjoying better performance than existing tools like PyTorch3D and redner. To further improve robustness, we utilize several shape and material priors as well as a coarse-to-fine optimization strategy to reconstruct geometry. Using both synthetic and real input images, we demonstrate that our technique can produce reconstructions with higher quality than previous methods.

2020
A Bayesian Inference Framework for Procedural Material Parameter Estimation cgcv
Yu Guo, Miloš Hašan, Lingqi Yan, Shuang Zhao
Computer Graphics Forum (Pacific Graphics), 39(7), December 2020
Procedural material models have been gaining traction in many applications thanks to their flexibility, compactness, and easy editability. In this paper, we explore the inverse rendering problem of procedural material parameter estimation from photographs using a Bayesian framework. We use summary functions for comparing unregistered images of a material under known lighting, and we explore both hand-designed and neural summary functions. In addition to estimating the parameters by optimization, we introduce a Bayesian inference approach using Hamiltonian Monte Carlo to sample the space of plausible material parameters, providing additional insight into the structure of the solution space. To demonstrate the effectiveness of our techniques, we fit procedural models of a range of materials---wall plaster, leather, wood, anisotropic brushed metals and metallic paints---to both synthetic and real target images.
MaterialGAN: Reflectance Capture using a Generative SVBRDF Model cgcv
Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, Shuang Zhao
ACM Transactions on Graphics (SIGGRAPH Asia 2020), 39(6), November 2020
We address the problem of reconstructing spatially-varying BRDFs from a small set of image measurements. This is a fundamentally under-constrained problem, and previous work has relied on using various regularization priors or on capturing many images to produce plausible results. In this work, we present MaterialGAN, a deep generative convolutional network based on StyleGAN2, trained to synthesize realistic SVBRDF parameter maps. We show that MaterialGAN can be used as a powerful material prior in an inverse rendering framework: we optimize in its latent representation to generate material maps that match the appearance of the captured images when rendered. We demonstrate this framework on the task of reconstructing SVBRDFs from images captured under flash illumination using a hand-held mobile phone. Our method succeeds in producing plausible material maps that accurately reproduce the target images, and outperforms previous state-of-the-art material capture methods in evaluations on both synthetic and real data. Furthermore, our GAN-based latent space allows for high-level semantic material editing operations such as generating material variations and material morphing.
Towards Learning-Based Inverse Subsurface Scattering cgcv
Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, Ioannis Gkioulekas
IEEE Inter­national Conf­erence on Comput­ational Photo­graphy (ICCP), April 2020
Given images of translucent objects, of unknown shape and lighting, we aim to use learning to infer the optical parameters controlling subsurface scattering of light inside the objects. We introduce a new architecture, the inverse transport network (ITN), that aims to improve generalization of an encoder network to unseen scenes, by connecting it with a physically-accurate, differentiable Monte Carlo renderer capable of estimating image derivatives with respect to scattering material parameters. During training, this combination forces the encoder network to predict parameters that not only match groundtruth values, but also reproduce input images. During testing, the encoder network is used alone, without the renderer, to predict material parameters from a single input image. Drawing insights from the physics of radiative transfer, we additionally use material parameterizations that help reduce estimation errors due to ambiguities in the scattering parameter space. Finally, we augment the training loss with pixelwise weight maps that emphasize the parts of the image most informative about the underlying scattering parameters. We demonstrate that this combination allows neural networks to generalize to scenes with completely unseen geometries and illuminations better than traditional networks, with 38.06% reduced parameter error on average.
2013
Inverse Volume Rendering with Material Dictionaries cgcv
Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, Anat Levin
ACM Transactions on Graphics (SIGGRAPH Asia 2013), 32(6), November 2013
Translucent materials are ubiquitous, and simulating their appearance requires accurate physical parameters. However, physically-accurate parameters for scattering materials are difficult to acquire. We introduce an optimization framework for measuring bulk scattering properties of homogeneous materials (phase function, scattering coefficient, and absorption coefficient) that is more accurate, and more applicable to a broad range of materials. The optimization combines stochastic gradient descent with Monte Carlo rendering and a material dictionary to invert the radiative transfer equation. It offers several advantages: (1) it does not require isolating singlescattering events; (2) it allows measuring solids and liquids that are hard to dilute; (3) it returns parameters in physically-meaningful units; and (4) it does not restrict the shape of the phase function using Henyey-Greenstein or any other low-parameter model. We evaluate our approach by creating an acquisition setup that collects images of a material slab under narrow-beam RGB illumination. We validate results by measuring prescribed nano-dispersions and showing that recovered parameters match those predicted by Lorenz-Mie theory. We also provide a table of RGB scattering parameters for some common liquids and solids, which are validated by simulating color images in novel geometric configurations that match the corresponding photographs with less than 5% error.