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Figure 1: We apply path-space differentiable rendering to implicit surfaces. Specifically, we derive the necessary mathematical

tools and then propose Monte Carlo estimators of the boundary integrals. In this example, we showcase our method can handle

the boundary integrals even with complex shapes.

ABSTRACT

Physics-based differentiable rendering is a key ingredient for inte-
grating forward rendering into probabilistic inference and machine
learning pipelines. As a state-of-the-art formulation for differen-
tiable rendering, differential path integrals have enabled the de-
velopment of efficient Monte Carlo estimators for both interior
and boundary integrals. Unfortunately, this formulation has been
designed mostly for explicit geometries like polygonal meshes.

In this paper, we generalize the theory of differential path in-
tegrals to support implicit geometries like level sets and signed-
distance functions (SDFs). In addition, we introduce new Monte
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Carlo estimators for efficiently sampling discontinuity boundaries
that are also implicitly specified. We demonstrate the effectiveness
of our theory and algorithms using several differentiable-rendering
and inverse-rendering examples.
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1 INTRODUCTION

Physics-based rendering is the core technology for high quality
computer-generated imagery such as those seen in feature films.
Physics-based differentiable rendering brings this technology to
other fields such asmachine learning. Themain object being studied
in this field is the boundary integrals. Those boundary integrals
occur when shape is to be differentiated with respect to. Early
research focused on deriving these boundary integrals in different
contexts [Li et al. 2018; Zhang et al. 2019; Loubet et al. 2019; Zhang
et al. 2020, 2021]. Recent works focus more on how to efficiently
estimate those boundary integrals [Yan et al. 2022; Xu et al. 2023;
Zhang et al. 2023].

A common assumption in those researches is the representation
of the shape being mesh or parametric surfaces. While mesh is
a popular shape representation, another popular one is implicit
surface. An implicit surface is defined by the zero-level set of some
scalar-valued function, i.e., where the function takes its value zero.

In practice, there are two families of Monte Carlo estimators to
handle the boundary integrals, namely, reparameterization [Loubet
et al. 2019; Bangaru et al. 2020; Xu et al. 2023] and edge-sampling [Li
et al. 2018; Zhang et al. 2020, 2023]. Reparameterization replaces
the boundary integrals with equivalent interior ones and, thus,
avoids explicitly sampling discontinuities boundaries. In addition,
these techniques can be adopted for implicit geometries relatively
easily [Vicini et al. 2022; Bangaru et al. 2022]. On the other hand, the
reparameterized interior integrals remain difficult to importance
sample, which can cause the reparameterization-based methods to
suffer from higher variance.

On the other hand, edge-sampling-based methods directly esti-
mate the boundary integrals using Monte Carlo integration. When
importance sampled properly [Zhang et al. 2023], they tend to
produce lower-variance estimates than the reparameterization-
based methods. Unfortunately, state-of-the-art techniques in this
category—such as the path-space formulation by Zhang et al. [2020]—
have been mostly derived for explicit geometries. For example,
Monte Carlo sampling over silhouettes of implicit surfaces has not
been addressed by prior methods.

In this paper, we bridge this gap by introducing a path-space
theory for differentiable rendering of implicit surfaces. Concretely,
Our contributions include:

• Generalizing the path-space differentiable rendering framework
[Zhang et al. 2020] to include implicit surfaces (§4);

• Introducing Monte Carlo estimators for the boundary integrals
with implicit surfaces (§5).

We demonstrate the effectiveness of our method using several
synthetic differentiable-rendering and inverse-rendering examples.

2 RELATEDWORKS

Forward rendering of implicit surfaces. Implicit surface render-
ing or isosurface rendering can be used to visualized volumetric
data such as those obtained by CT or MRI. One way to render
implicit surfaces is to triangulated the isosurface using Marching
Cubes [Lorensen and Cline 1998] and then render the triangular
mesh using regular rendering methods. One can also render the

Table 1: Commonly used symbols in this paper. The right-

most column indicates 𝜋-dependency.

Symbol Definition 𝜋-dep.

M The union of all surfaces in the scene Yes
B Reference surface No

X( ·, 𝜋 ) Differentiable one-to-one mapping Yestransforming B toM(𝜋 )

�̂� material path space No

𝜕�̂� material boundary path space Yes
𝑓 material measurement function Yes

ΔB𝐾 Jump discontinuities of 𝑓 with respect to 𝒑𝐾 Yes
𝒏𝜕 Normal of discontinuity curve Yes

𝒗 Velocity field over B defined in Eq. (15) Yes
𝑉𝜕 Curve normal velocity defined in Eq. (8) Yes

implicit surface from point samples generated by particle repul-
sion [Witkin and Heckbert 1994]. Yet another way is to use ray trac-
ing [Barr 1986; Levoy 1988]. Ray tracing requires a ray-surface in-
tersection routine, examples of which include sphere tracing [Hart
1996] and interval analysis [Flórez et al. 2008]. Besides the above
surface rendering methods, volume rendering [Drebin et al. 1988]
can also be used to render implcit surfaces.

Physics-based differentiable rendering. Physics-based differen-
tiable rendering correctly accounts for derivatives of rendered im-
ages with respect to shapes. Early works [Li et al. 2018; Loubet et al.
2019; Zhang et al. 2019; Bangaru et al. 2020; Zhang et al. 2020, 2021]
derive the exact mathematical form of the derivatives in various
contexts. Following works [Xu et al. 2023; Yan et al. 2022; Yu et al.
2022, 2023; Zhang et al. 2023; Vicini et al. 2021; Nimier-David et al.
2020] attempt to estimate the derivatives more efficiently. An com-
mon assumption shared by these works is the underlying surface
representation being mesh or parametric surface.

Differentiable rendering of implicit surfaces. Bangaru et al. [2020]’s
method despite being designed for meshes, can be easily applied
to implicit surfaces. Bangaru et al. [2022] and Vicini et al. [2022]
propose more efficient methods to specifically do differentiable ren-
dering on signed distance functions. Our method applies to general
implicit surfaces defined as the zero-level set of some function.

3 PRELIMINARIES

We now briefly revisit some mathematical and algorithmic prelimi-
naries related to the differential path integral formulation [Zhang
et al. 2020]. Table 1 presents a list of symbols that are commonly
used in this paper and their definitions.

Path integral. In forward rendering, the path integral formulation
introduced by Veach [1997] has allowed the development of many
advanced Monte Carlo techniques (e.g., bidirectional path tracing).
Under this formulation, the response of a radiometric detector is
expressed as a path integral:

𝐼 =

∫
𝛀

𝑓 (�̄�) d𝜇 (�̄�), (1)
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where𝛀 := ∪𝑁 ≥1M𝑁+1 is the path space comprising light transport
paths �̄� = (𝒙0, 𝒙1, . . . , 𝒙𝑁 ) withM being the union of all object
surfaces, 𝑓 is the measurement contribution function, and 𝜇 is the
corresponding area-product measure.

Material-form reparameterization. Differentiating Eq. (1) with
respect to some arbitrary parameter 𝜋 ∈ R can be complicated
when the scene geometryM—and hence the path space 𝛀—evolves
with this parameter. To address this problem, Zhang et al. [2020]
have proposed to reparameterize the path integral (1) using some
fixed reference surface B coupled with a differentiable one-to-one
mapping X(·, 𝜋) that transforms the fixed reference surface B to
the evolving surfaceM(𝜋) for all 𝜋 .

This mapping allows a change of variable from light paths �̄� =

(𝒙0, . . . , 𝒙𝑁 ) tomaterial paths �̄� = (𝒑0, . . . ,𝒑𝑁 )with 𝒙𝑛 = X(𝒑𝑛, 𝜋)
for all 0 ≤ 𝑛 ≤ 𝑁 . Applying this change of variable to Eq. (1) yields
the material-form path integral:

𝐼 =

∫
�̂�

𝑓 (�̄�) d𝜇 (�̄�), (2)

which is over the material path space �̂� = ∪𝑁 ≥1B𝑁+1. Further,
the integrand of this path integral 𝑓 is the material measurement
contribution defined as

𝑓 (�̄�) = 𝑓 (�̄�)
𝑁∏
𝑛=0

𝐽 (𝒑𝑛, 𝜋), (3)

where
𝐽 (𝒑, 𝜋) := ∥d𝐴(𝒙 )/d𝐴(𝒑)∥ (4)

is the Jacobian resulting from the reparameterization with 𝐴 indi-
cating the surface-area measure.

Differential path integral. Zhang et al. [2020] have shown that
the derivative of Eq. (2) with respect to an arbitrary parameter 𝜋
can be expressed as material-form differential path integrals of the
form

d𝐼
d𝜋

=

∫
�̂�

d
d𝜋

𝑓 (�̄�) d𝜇 (�̄�)︸                 ︷︷                 ︸
interior

+
∫
𝜕�̂�

𝑓 (�̄�)𝑉𝜕 (𝒑𝐾 ) d ¤𝜇︸                     ︷︷                     ︸
boundary

, (5)

where the integrand of the interior term is the derivative of the
material measurement contribution 𝑓 defined in Eq. (3).

The boundary integral in Eq. (5) is over the material boundary
path space 𝜕�̂� comprising material boundary paths

�̄�𝐾 = (𝒑0, . . . ,𝒑𝑁 ), 𝒑𝐾 ∈ ΔB(𝒑𝐾−1), (6)

containing exactly one vertex 𝒑𝐾 constrained to a set of visibility
boundaries ΔB(𝒑𝐾−1). Precisely, 𝒑𝐾 is a jump discontinuity point
of the mutual visibility V(X(𝒑𝐾−1, 𝜋) ↔ X(·, 𝜋)) with 𝒑𝐾−1 fixed.
We define boundary segments to be the pair

(𝒑𝐾−1,𝒑𝐾 ) ∈ B × ΔB(𝒑𝐾−1), (7)

and refer to them as 𝒑𝐾−1𝒑𝐾 .
Additionally, 𝑉𝜕 captures the rate at which the visibility bound-

ary shifts (with respect to 𝜋 ) and is defined as

𝑉𝜕 (𝒑𝐾 ) = 𝒏𝜕 (𝒑𝐾 ) ·
d𝒑𝐾
d𝜋

, (8)

where 𝒏𝜕 (𝒑𝐾 ) denotes the unit normal of the visibility boundary
(that is perpendicular to both the surface normal 𝒏B (𝒑𝐾 ) and the

𝒑!
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Figure 2: Boundary segments: A boundary light path (6) is
comprised of a boundary segment (7) 𝒑S

0 𝒑
D
0 (shown in red) as

well as a source and a detector subpath (illustrated in orange

and blue, respectively). The two endpoints of the boundary

segment (7) are located on the visibility boundary of each

other. A boundary segment (6) 𝒑S
0 𝒑

D
0 can be uniquely deter-

mined with a surface point 𝒑B ∈ B interior to the segment,

along with a direction 𝝎B
.

tangent of the curve). We assume without loss of generality that
𝒏𝜕 (𝒑𝐾 ) points toward the occluded side of the visibility boundary.

Multi-directional form of the boundary path integral. Numerically
estimating the boundary integral in Eq. (5) is known to be challeng-
ing due to the need of sampling boundary segments which requires
silhouette detection.

To avoid silhouette detection at every vertex, Zhang et al. [2020]
propose to re-index a material boundary path as

�̄� = (𝒑S
𝑠 , . . . ,𝒑

S
0,𝒑

D
0 , . . . ,𝒑

D
𝑡 ) (9)

with 𝒑S
0𝒑

D
0 being the boundary segment that further separates the

full path �̄� into a source subpath (𝒑S
𝑠 , . . . ,𝒑

S
0) and a detector subpath

(𝒑D
0 , . . . ,𝒑

D
𝑡 ). Then, the boundary component of Eq. (5) can be

rewritten in a multi-directional form as∫
B

∫
ΔB(𝒑𝐾−1 )

(∫
�̂�

𝑓 S d𝜇 (�̄�S)
)
𝑓 B

(∫
�̂�

𝑓 D d𝜇 (�̄�D)
)

dℓ (𝒑D
0 ) d𝐴(𝒑

S
0),

(10)
where 𝑓 B, 𝑓 S, and 𝑓 D are components of the integrand 𝑓 (�̄�)𝑉𝜕 (𝒑D

0 )
capturing the contributions of the boundary segment, the source
subpath, and the detector subpath, respectively.

Using the multi-directional-form integral (10), one can construct
a boundary path by (i) sampling the material boundary segment
𝒑S

0 𝒑
D
0 ; and (ii) using standard methods such as unidirectional and

bidirectional path sampling to build the source and detector sub-
paths. This avoids the need of expensive silhouette detection [Li
et al. 2018] and, thus, scales significantly better to scenes with
detailed geometries.

Previously, Zhang et al. [2020] have derived the exact form of
Eq. (10) and the corresponding sampling procedures for explicit
geometries (i.e., polygonal meshes). In this paper, we will derive the
multi-directional-form boundary path integral for implicit geome-
tries and develop new Monte Carlo sampling methods to efficiently
estimate this integral.
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4 DIFFERENTIAL PATH INTEGRALS FOR

IMPLICIT SURFACES

In what follows, we explain how the formulation of differential
path integrals can be realized for implicit surfaces.

Specifically, we first discuss how the material-form parameteri-
zation can be defined for implicit surfaces in §4.1. Then, we derive
the multi-directional form of the boundary path integral—which is
crucial for efficient estimation of this term—in §4.2.

To simplify the notations, we assume without loss of generality
that all derivatives are to be evaluated at 𝜋 = 0 and define

𝜕𝜋ℎ :=
[

dℎ
d𝜋

]
𝜋=0

(11)

for all ℎ.

4.1 Material-Form Parameterization

In this paper, we focus on differentiable rendering of evolving closed
implicit surfaces defined as zero-level sets of some scalar-valued
function 𝜙 (𝒙 ;𝜋):

M(𝜋) := {𝒙 ∈ R3 : 𝜙 (𝒙 ;𝜋) = 0}. (12)

To facilitate the differentiation of the path integral, we follow
Zhang et al. [2020] by reparameterizing the evolving implicit sur-
faceM(𝜋) using a closed reference surface B that is independent
of the parameter 𝜋 and defined as

B :=M(0) = {𝒙 ∈ R3 : 𝜙 (𝒙 ; 0) = 0}. (13)

Unfortunately, unlike when using explicit geometries, it is hard—
if not impossible—to define a one-to-one mapping X(·, 𝜋) that trans-
forms the reference surface B to the evolvingM(𝜋) for all 𝜋 . In-
stead, we define a mapping illustrated in Figure 3 that is only one-
to-one at 𝜋 = 0 via

X(𝒑, 𝜋) := 𝒑 + 𝑡 (𝒑, 𝜋) 𝒏B (𝒑), (14)

where:
• 𝒏B (𝒑) denotes the unit normal of the reference surface B at 𝒑
and is assumed to be smooth and differentiable;

• 𝑡 (𝒑, 𝜋) ∈ R indicates the distance from 𝒑 to the first intersection
between the (fixed) line passing through 𝒑 via the direction
𝒏B (𝒑) and the evolving surfaceM(𝜋).

X(·, 0) is the identity map and thus one-to-one.
We define the velocity of 𝒑 ∈ B as the derivative of X w.r.t. 𝜋 :

𝒗 (𝒑) := (𝜕𝜋 𝑡) (𝒑) 𝒏B (𝒑), (15)

andwith our definition ofB and𝜋 = 0 [Stam and Schmidt 2011] [Yariv
et al. 2020],

(𝜕𝜋 𝑡) (𝒑) = −
𝜕𝜋𝜙 (𝒑)
∥∇𝒑𝜙 (𝒑)∥

. (16)

Recall that 𝐽 (𝒑, 𝜋) := ∥d𝐴(𝒙 )/d𝐴(𝒑)∥ is the ratio between surface
elements at 𝒙 = X(𝒑, 𝜋) ∈ M(𝜋) and 𝒑 ∈ B. It holds that

(𝜕𝜋 𝐽 ) (𝒑) :=
[

d
d𝜋

𝐽 (𝒑, 𝜋)
]
𝜋=0

= 𝜅 (𝒑)𝑉 (𝒑). (17)

We leave the proof in the supplemental.

𝒑

X(𝒑, 𝜋)

ℬ

ℳ(𝜋)

Figure 3: X(𝒑, 𝜋) is the intersection of 𝒑’s normal with the

evolving surfaceM(𝜋).

4.2 Deriving Boundary Segment

Sampling the boundary segment as in Eq. (10) still requires silhou-
ette detection. Zhang et al. [2020] performs a change of integration
variable to avoid the silhouette detectionwith meshes for most types
of boundary segment except for those with camera as one of its
endpoints. We derive the change of integration variable for higher-
order smooth surfaces. Note Zhang et al. [2023] also derive the same
change of integration variable in a concurrent work. We provide a
high-level overview here and leave the complete derivation in the
supplemental.

For brevity, we name the integrand of Eq. (10) 𝐹 and drop the
subscripts and start from there:∫

B

∫
ΔB

𝐹 (𝒑S,𝒑D) dℓ (𝒑D) d𝐴(𝒑S). (18)

Our goal is to change the integration variable from (𝒑S,𝒑D) to
(𝒑B,𝝎B) illustrated in Figure 4.

𝒑D are silhouette projected onto surface, and we first project
them back onto the silhouette 𝒑B. The projection results in the
following change of variable:∫

B

∫
ΣB

𝐹 (𝒑S,𝒑D) dℓ (𝒑D)
dℓ (𝒑B)

dℓ (𝒑B) d𝐴(𝒑S), (19)

where ΣB denotes the silhouette of B as seen from the perspective
of 𝒑S.

𝒑S can vary in two directions, namely dℓ𝑛 and dℓ𝑡 , where dℓ𝑛
is the projection of 𝝎B onto the tangent plane at 𝒑S and dℓ𝑡 is the
direction orthogonal to dℓ𝑛 . When 𝒑S varies along dℓ𝑛 , 𝒑B varies
along 𝝎B, so we can map the variation of 𝒑S along dℓ𝑛 onto that
of 𝒑B along 𝝎B. The mapping results in the following change of
variable:∫

B

∫
ΓB

𝐹 (𝒑S,𝒑D) dℓ𝑛 (𝒑S)dℓ (𝒑D)
dℓ𝑛 (𝒑B)dℓ (𝒑B)

dℓ𝑡 (𝒑S) d𝐴(𝒑B), (20)

where ΓB denotes the intersection of B and the tangent plane at
𝒑B.

𝒑S is the intersection of 𝒑B’s tangent vector𝝎B withB, meaning
there is a one-to-one mapping between 𝒑S and 𝝎B defined by the
intersection. we use this mapping to map 𝒑S’s other variation onto
𝝎B’s. And the mapping results in the following change of variable:∫
B

∫
S
𝐹 (𝒑S,𝒑D) dℓ𝑡 (𝒑S)dℓ𝑛 (𝒑S)dℓ (𝒑D)

d𝜃 (𝝎B)dℓ𝑛 (𝒑B)dℓ (𝒑B)
d𝜃 (𝝎B) d𝐴(𝒑B) . (21)

We leave the detailed derivation in the supplemental.
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Figure 4: We change the integration variable from (𝒑S,𝒑D)
to (𝒑B,𝝎B).

5 OUR MONTE CARLO ESTIMATORS

We use Monte Carlo integration to estimate the differential inte-
grals of Eq. (5). In practice, the interior integral in Eq. (5) can be
easily computed through the differentiation of the forward ren-
dering process. However, acquiring the boundary integrals is not
straightforward since the domain of those boundary integrals is
hard to sample efficiently. To address this problem with implicit sur-
faces, we introduce new Monte Carlo estimators for the boundary
integrals.

There are two kinds of boundary integrals. Aforementioned
Eq. (21) is called the secondary boundary integral whose boundary
segment has surface points as its two endpoints. On the other hand,
Eq. (10) with 𝒑S

0 being a camera is called the primary boundary
integral whose boundary segment has the camera as one of its
endpoints. The change of integration variables in Section 4.2 helps
to avoid silhouette detection, i.e., finding and sampling points from
the silhouette of the surface from the point of view of some point,
when sampling the boundary segment. However, when a camera is
one of the endpoints, the change of variable no longer holds. And
we have to perform silhouette detection for the camera to estimate
the primary boundary integral.

We estimate the primary boundary integral by sampling points
directly from the silhouette called the primary edges of the implicit
surface. Estimating the primary boundary integral and sampling
primary edges is easy with explicit geometries such as mesh. With
mesh, one only needs to project the edges onto the image plane
and sample from them. However, with implicit surfaces, we don’t
have a finite set of edges at our disposal or a parameterization
of the primary edges. We instead use range analysis [Stolfi and
De Figueiredo 1997] to obtain a tight bound and then utilize a proxy
edge.

We estimate the secondary boundary integral by first sampling
a surface point and then a tangent direction. We do not have a
parameterization of the implicit surface, so we instead use a proxy
surface bounding the surface. As for the tangent direction, we use
next-event estimation to importance sample it.

5.1 Sampling Primary Edges

Discontinuities in the camera importance function form the primary
edges of the surface. Primary edges is where the surface normal is
perpendicular to the view vector, i.e., where the dot product of these

two vectors equals zero, illustrated in Figure 5-(a). That dot product
naturally defines another implicit surface we call the orientation
function associated with the surface and camera, defined as follows:

𝜓𝜙,𝒄 (𝒑) := ⟨∇𝜙 (𝒑), v𝒄 (𝒑)⟩, (22)

where 𝒄 is the camera position and v := 𝒄 − 𝒑 is the view vector.
We define the primary edges S to be the intersection of 𝜙 and 𝜓 ,
visualized in Figure 5-(a), as follows:

S := {𝒑 | 𝜙 (𝒑) = 0,𝜓𝜙,𝒄 (𝒑) = 0}. (23)

We sample points from S by marching rays over some proxy
surface as in Figure 5-(b). Let us use the surface’s bounding box as an
example. The projection of S on one of the faces of the bounding
box is some curve on the face. Let us pretend this projection is
one-to-one for now. Then sampling S is equivalent to sampling the
projection. However, sampling the projection is still not tractable. So
let us simplify the problem once more. Let us project the projection
again onto some proxy curve we know how to sample. In this
example, that is one of the edges of the face. Then we can sample a
point on S by first sampling a point on the edge and then mapping
this point onto S, illustrated in Figure 5-(b).

Specifically, after sampling a point on the edge, we march along
the direction perpendicular to the edge starting from this point.
At each step, we shoot a ray in the direction normal to the face
toward the surface. We evaluate𝜓 at the intersection and compare
the value with that from the last step. If the signs are different, we
take this intersection as the sample point on S. This procedure is
written in pseudocode in Algorithm 1.

In general, the ray might intersect either surface multiple times.
That means we have to keep track of all the intersections from the
previous step and keep marching all the way to the other edge. We
instead use range analysis [Stolfi and De Figueiredo 1997] to bound
S tighter and assume there is only one intersection in this tighter
bound.

Range analysis [Stolfi and De Figueiredo 1997] is a method to
propagate bounds through functions. We specifically use affine
arithmetic. Given an axis-aligned bounding box (AABB), affine
arithmetic tells us a bound of the function in this AABB. If the
output bound does not contain zero, then this AABB is guaranteed
not to intersect with the surface.

We cut the local space of the implicit surface into AABBs of the
same size. The exact size is a hyperparameter and we use 6.1e−5,
i.e., cutting 42 times a unit cube in half, in all our experiments. After
the cutting, we apply affine arithmetic to each AABB against 𝜙 and
𝜓 . We throw away those AABBs guaranteed not to intersect with
both surfaces and keep the others that possibly intersect both of
the surfaces. Those AABBs bound S as in Figure 6.

5.2 Sampling Secondary Edges

We sample the secondary boundary integral by first sampling a
surface point and then a tangent direction.

5.2.1 Sampling Implicit Surfaces. The difficulty of sampling im-
plicit surfaces is our surface representation is implicit, meaning we
do not have a global parameterization. Our solution is to use some
simple proxy surface amenable to parameterization.
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𝜓
𝒑!
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𝒮 = {𝒑𝟏, 𝒑𝟐}

𝜓

𝜙
𝒮

𝒒!
𝒒!"#

𝒒#

ℰ
ℱ

𝒑

(a) (b)

Figure 5: (a) Primary edges is the intersection of 𝜙 and𝜓 . In

2D, 𝜙 and𝜓 are curves, and S is a finite set of points. (b) We

sample the primary edges by marching over a proxy surface

𝜙

𝜓 𝒮

(a) (b)

Figure 6: AABBs classified by affine arithmetic as possibly

intersect with (a) 𝜙 or 𝜓 and (b) both of them. We bound

silhouette S by (b) AABBs that possibly intersect with both

the implicit surface 𝜙 and its associated orientation function

𝜓 .

Imagine our implicit surface being a sphere. We assume there is
a bounding box surrounding the sphere. Then we can use one of
the faces of the box as the proxy.

Let F be one of the faces of the bounding box of the sphere
B. We consider the following integral defined over B and try to
change the domain to F . ∫

B
ℎ(𝒑) d𝒑 (24)

We next define the transformations needed. For any point 𝒒 ∈ F ,
we can cast a ray 𝑟 := {𝒒 + 𝑡𝒏F (𝒒) | 𝑡 ∈ R+} from 𝒒 toward B.
This ray will intersect with B two times. Let T1 : F → B be the
transformation mapping 𝒒 ∈ F to the first intersection and T2
the second. T1 and T2 cut B into two disjoint parts and so do the
integral: ∫

T1 (F)
ℎ(𝒑) d𝒑 +

∫
T2 (F)

ℎ(𝒑) d𝒑 (25)

Next we change the domains to F :∫
F
ℎ(T1 (𝒒)) 𝐽T1 (𝒒) d𝒒 +

∫
F
ℎ(T2 (𝒒)) 𝐽T2 (𝒒) d𝒒

=

∫
F

2∑︁
𝑖=1

ℎ(T𝑖 (𝒒)) 𝐽T𝑖 (𝒒) d𝒒
(26)

where 𝐽T𝑖 are the Jacobian determinants of T𝑖 .
In general, B could be any surface, meaning there could be more

than two intersections, and each point in F could have a different
number of intersections. For the former problem, we simply continue
the summation on. The latter means T𝑖 might not be defined for

ALGORITHM 1: Our primary-edge sampling routine as in Figure 5-
(b)

1 Sample_Primary_Edge()
Input: Face F of bounding box and edge E of F, and max number

of steps 𝑖max and step size 𝜖
Output: 𝒑 ∈ S

2 begin

/* Sample a point from the proxy */

3 Sample a point 𝒒 ∈ E;
/* 𝜓prev stores 𝜓’s value at the previous step and

is initialized to zero */

4 𝜓prev ← 0;
/* March along the normal of E over F */

5 for 𝑖 = 1, 2, . . . , 𝑖max do

/* Intersect the ray starting from 𝒒 along the
normal 𝒏F of face F toward implicit surface
𝜙 */

6 𝒑 ← ray_intersect(𝒒,𝒏F ) ;
7 if 𝒑 == NOT_HIT then

8 𝜓prev ← 0;
9 else

/* Evaluate 𝜓 at the current step */

10 𝜓𝑖 ← 𝜓 (𝒑) ;
/* If sign of 𝜓 at this step is different

from that at the last step */

11 if 𝜓prev ·𝜓𝑖 < 0 then

/* We just intersected 𝜓, meaning 𝒑

intersects both 𝜙 and 𝜓 */

12 return 𝒑;
13 end

14 𝜓prev ← 𝜓𝑖 ;
15 end

/* Step ahead along the normal 𝒏E of edge E */

16 𝒒← 𝒒 + 𝜖 · 𝒏E
17 end

18 return NULL
19 end

some points in F since the 𝑖-th intersection might not exist. We let
those points have zero contribution as follows:

𝑔𝑖 (𝒒) :=
{
ℎ(T𝑖 (𝒒)) 𝐽T𝑖 (𝒒), T𝑖 (𝒒) defined
0, otherwise (27)

Letting 𝑁 be the max number of intersections, we can change the
domain of Eq. (24) from the implicit surface B to the face F of the
bounding box as follows:

𝑁∑︁
𝑖=1

∫
F
𝑔𝑖 (𝒒) d𝒒. (28)

Then we can estimate Eq. (28) by directly sampling points from its
domain F .

5.2.2 Next Event Estimation. After sampling a surface point, we
could simply uniformly sample a tangent direction. But we can
do it more efficiently using next-event estimation. We do it by in-
tersecting the tangent plane with light and then sampling points
from the intersection as in Figure 7-(b). For environment maps, we
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Figure 7: (a) We sample points from the implicit surface 𝜙

by sampling a point 𝒒 from the proxy F and project 𝒒 onto

the implicit surface 𝜙 . We then take all the intersections,

T1 (𝒒) and T2 (𝒒) in this example, as the sample points from

the implicit surface 𝜙 . (b) We intersect the tangent plane T𝒑B
at 𝒑 with light L and only sample from tangent directions

intersecting the light L

pre-compute some plane-sphere intersections with uniformly dis-
tributed normals determining the plane orientation. We then build
a 1D distribution conditioned on the normal direction off of those
intersections. This way, we do not have to build distributions on the
fly. We assume the number of lights is one in our experiments and
leave efficient plane intersection with a large number of polygons
to future work.

6 EXPERIMENTS

To assess the effectiveness of our method, we conduct experiments
on several test scenes.

6.1 Settings

We implement our Monte Carlo estimator with both unidirectional
and bidirectional path sampling based on the cuda_ad_rgb backend
of Mitsuba 3 [Jakob et al. 2022]. We conduct all our experiments on
an NVIDIA RTX 4090 GPU.

We represent an implicit surface as a grid-based SDF with tri-
cubic interpolation as in diffsdf [Vicini et al. 2022] so that the
surface normal is continuous.

Optimization setup. We use the Adam optimizer [Kingma and Ba
2014] and the L2 loss in all our inverse-rendering experiments. The
number of views is eight, and the batch size is two. The runtime of
one optimization is typically 30 to 90 minutes which usually uses
64 to 256 epochs.

6.2 Differentiable Rendering

We validate our estimators in Figure 8 by comparing derivative
estimated by our estimators and that by finite difference using a
large number of samples. In the top row, we differentiate the image
w.r.t. the horizontal translation of the shape. In the bottom row, we
differentiate the image w.r.t. the vertical-axis rotation of the shape.
The area light near the ceiling is flipped upside down, and the scene
is thus dominated by indirect illumination.

In Figure 9, we show that our bidirectional estimator performs
better than our unidirectional one with hard-to-sample lights and
specular materials.

Ordinary FD Ours

Ordinary FD Ours

Figure 8: We validate our method by comparing derivative

images estimated by our method to that by finite difference

(FD) with a large number of samples. Our NEFERTITI and

SUZANNE results are computed using our unidirectional
and bidirectional estimators, respectively. Our results closely

match the FD reference and demonstrate the correctness of

our implementation.

6.3 Inverse Rendering

We quantitatively compare our optimized shape with diffsdf’s using
Chamfer distance (between target meshes and those extracted from
optimized implicit surfaces).

In Figure 12, the light is blocked by the ceiling with only a small
hole letting light in. And We only observe the shadow of the shape,
so the gradient only consists of the secondary boundary integral.
Since light is occluded by the ceiling except for a small region, it is
very hard to sample light in this configuration. Our guiding grid
helps us to find the un-occluded region of the light and makes our
derivative estimates less noisy.

In Figure 13, the scene is lit by a small light flipped upside down.
The light is hard to sample in this scene and so our bidirectional
estimator is more efficient than the other unidirectional estimators.
Our bidirectional estimator’s derivative image is cleaner, and the
optimized shape is closer to the target and smoother than the other
estimators.

In Figure 10 and Figure 11, our estimator computes cleaner gra-
dient for all the three components, leading to much better results
than diffsdf.

7 DISCUSSION AND CONCLUSION

Limitations. As is the case with all PSDR methods, sampling
boundary paths efficiently is nontrivial and typically requires some
form of guiding. Our current implementation uses a simple regular-
grid-based scheme (similar to [Zhang et al. 2020]) which is known
to have difficulties handling reflections off of highly glossy sur-
faces. Fortunately, we expect using concurrent projective sam-
pling [Zhang et al. 2023] to greatly mitigate this problem.
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Ordinary FD

Ours (unidir.) Ours (bidir.)

Figure 9: Differentiable rendering comparison (SUZANNE)

between our bidirectional and unidirectional estimator.

Scenes where lights are difficult to sample and with specular

materials need to be handled by bidirectional estimators.

Future work. How to efficiently guide the new secondary bound-
ary integral for implicit surfaces is something one can explore. One
thing that is hard about it is that for one sample on the proxy shape,
there are multiple corresponding surface points. We only use a sin-
gle guiding grid, and that means the tangent direction is fixed over
those possibly multiple surface points. We only did experiments
on a grid-based SDF while neural SDF is a more popular repre-
sentation. Theoretically, our theory supports arbitrary continuous
level-set functions —including neural SDFs. In practice, we build
our system based on diffsdf’s implementation (a custom branch of
Mitsuba) that uses grid-based SDFs. Integrating simple neural SDFs
(e.g., those using small MLPs) into the system should be possible,
but supporting more complex neural representations using Dr.Jit
efficiently can be challenging (at the system level).

Bias. Theoretically, our formulation is unbiased. In practice,
small amounts of bias can be introduced by the ray-surface in-
tersection and the sampling of silhouette points (needed by the
primary boundary paths) as follows. Computing the intersection
between a ray and an implicit surface (using, for example, spherical
tracing) is normally approximated. In other words, the computed
intersection is normally very close to the surface but may not be
exactly on it. We note that existing methods like diffsdf also have
this type of bias. When finding the silhouette points, our method
assumes at most one intersection for each sample point on the
proxy curve—which may be violated when the AABBs are not
small enough. Fortunately, we found the bias to have little impact
on the reconstruction quality in all our experiments.

Conclusion. In this paper, we generalized path-space differen-
tiable rendering to support implicit surfaces. Specifically, we demon-
strated howmaterial-form parameterization can be realized without
requiring a global parameterization of the reference surface. Also,
we derived multi-directional form of boundary path integrals which

are known to be essential for efficient estimation of these integrals.
Based on our generalized formulation, we introduced new Monte
Carlo estimators—including bidirectional ones—capable of render-
ing implicit surfaces with complex light transport effects.
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Initial (Chamfer Dist.) Target (0) Ours (7.8e!") diffsdf (339.3e!")

Forward

Shape Vis.

Loss

Ordinary FD Reference Ours diffsdfConfig.

Figure 10: Differentiable and inverse rendering comparison (CHAIR) between our unidirecitional estimator and diffsdf [Vicini
et al. 2022]. Our estimator can be used in inverse rendering to recover complex topology and thin features such as the chair in

this scene.

Initial (Chamfer Dist.) Target (0) Ours (7.9e!") diffsdf (37.0e!")

Forward

Shape Vis.

Loss

Ordinary FD Reference Ours diffsdfConfig.

Figure 11: Differentiable and inverse rendering comparison (BUNNY) between our unidirecitional estimator and diffsdf [Vicini
et al. 2022]. Our estimator estimates all the three components better than diffsdf and leads to the optimized shape being

smoother.
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Initial (Chamfer Dist.) Target (0) Ours (6.24e!") diffsdf (6.73e!")

Forward

Shape Vis.

Loss

Ordinary FD Reference Ours diffsdfConfig.

Figure 12: Differentiable and inverse rendering comparison (SHADOW) between our unidirecitional estimator and

diffsdf [Vicini et al. 2022]. We compare the secondary boundary integral of our estimator and diffsdf’s in this scene where we

only observe the shadow of the shape. We achieve less variance in the secondary boundary integral by explicit sampling this

component and guiding.

Ordinary FD Reference Ours (bidir.) Ours (unidir.) diffsdf

Initial (Chamfer Dist.) Target (0) Ours-bidir (2.7e!") Ours-unidir (10.2e!") diffsdf (2000e!")

Forward

Shape Vis.

Loss

Figure 13: Differentiable and inverse rendering comparison (BOB) between our bidirectional estimator, unidirectional estimator

and diffsdf [Vicini et al. 2022]. With scenes where lights are difficult to sample, our bidirectional estimator can achieve less

variance than other unidirectional estimators.
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