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Fig. 1. Our new technique reuses temporal data in the context of physics-based inverse direct illumination. During inverse-rendering, when optimizing a
scene iteratively using gradient-based methods such as stochastic gradient descent or Adam [Kingma and Ba 2014], we reuse light samples spatially and
temporally (across iterations), offering significantly cleaner forward rendering and gradient estimates than baseline methods without reuse. This example uses
the “Oxalis” painting lit by several bright spot lights and a dim fill light. We optimize the spatially varying albedo (initialized using the gray texture shown) of
the painting. (c, d) The baseline methods PT (B.1) and RIS (B.2) produce high variance—especially in dark areas only lit by the fill light, causing highly biased
results. (b) Our method, on the other hand, enjoys significantly more accurate reconstructions.

Recently, great progress has been made in physics-based differentiable ren-
dering. Existing differentiable rendering techniques typically focus on static
scenes, but during inverse rendering—a key application for differentiable
rendering—the scene is updated dynamically by each gradient step. In this
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paper, we take a first step to leverage temporal data in the context of inverse
direct illumination. By adopting reservoir-based spatiotemporal resampled
importance resampling (ReSTIR), we introduce new Monte Carlo estimators
for both interior and boundary components of differential direct illumina-
tion integrals. We also integrate ReSTIR with antithetic sampling to further
improve its effectiveness. At equal frame time, our methods produce gradi-
ent estimates with up to 100× lower relative error than baseline methods.
Additionally, we propose an inverse-rendering pipeline that incorporates
these estimators and provides reconstructions with up to 20× lower error.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: Differentiable rendering, inverse render-
ing, importance sampling, sample reuse, ReSTIR

ACM Trans. Graph., Vol. 42, No. 6, Article 214. Publication date: December 2023.

https://doi.org/10.1145/3618331


214:2 • Wang, Wyman, Wu, and Zhao

ACM Reference Format:
Yu-ChenWang, ChrisWyman, LifanWu, and Shuang Zhao. 2023. Amortizing
Samples in Physics-Based Inverse Rendering using ReSTIR. ACM Trans.
Graph. 42, 6, Article 214 (December 2023), 17 pages. https://doi.org/10.1145/
3618331

1 INTRODUCTION
Physics-based forward rendering synthesizes photorealistic images
of fully described 3D scenes. Given its importance, decades of for-
ward rendering research have led to numerous techniques capable
of accurately reproducing complex lighting, including soft shadows,
environmental illumination, and interreflection.

Inverse rendering instead infers parameters such as object shapes
and reflectance from images of the scene. Due to the complexity
of forward rendering, analytical inversions are generally infeasible.
Typically, inverse rendering relies on numerical optimizations to
find scene parameters that minimize differences (according to some
rendering loss) between target and forward-rendered images.
Efficient inverse-rendering optimizations using gradient-based

methods (e.g., stochastic gradient descent or Adam [Kingma and
Ba 2014]) require differentiating physics-based forward rendering
with respect to arbitrary scene parameters—a process known as
physics-based differentiable rendering.

Recently, great progress has beenmade in differentiable rendering.
Derivations for differentiating the rendering equation [Li et al. 2018],
radiative transfer [Zhang et al. 2019], and path integrals [Zhang et al.
2020, 2021b] have demonstrated that physics-based light transport is
generally differentiable. Building on these formulations, new Monte
Carlo methods (e.g., [Zeltner et al. 2021; Zhang et al. 2021a]) and
differentiable computations (e.g., [Nimier-David et al. 2020; Vicini
et al. 2021]) further improved efficiency.

Unfortunately, most differentiable rendering techniques focus on
static scenes. However, during inverse-rendering optimizations, the
scene is updated dynamically by each gradient step. Exploiting tem-
poral consistency between steps to improve efficiency has remained
largely unexplored.

In this paper, we take a first step to leverage temporal data in the
context of physics-based inverse direct illumination. Specifically, we
adopt reservoir-based spatiotemporal importance resampling (ReSTIR)
[Bitterli et al. 2020]—a powerful technique for real-time direct light-
ing in dynamic scenes—to significantly improve the efficiency of
differentiable direct illumination under complex lighting conditions.
Concretely, we make the following contributions:

• We introduce new ReSTIR-based Monte Carlo estimators for
both interior and boundary components of differential direct-
illumination integrals (§4 and §5).

• We discuss the interplay between ReSTIR and pixel-level anti-
thetic sampling [Yu et al. 2022] and introduce a simple technique
to improve the effectiveness of antithetic sampling (§6).

• We propose an efficient inverse-rendering pipeline that utilizes
our ReSTIR estimators (§7). Additionally, we discuss how multi-
view configurations can be supported efficiently by: (i) preserving
reservoirs across multiple iterations; (ii) using slightly biased
gradient estimates with respect to object shapes.

To validate our technique, we compare our gradient estimates with
those from prior unbiased methods (Figure 6). Lastly, we demon-
strate our effectiveness using several differentiable-rendering (Fig-
ures 7–9) and inverse-rendering (Figures 1, 10–14) examples.

2 RELATED WORKS
We review works in forward and differentiable rendering of surfaces.

Forward rendering of dynamic scenes. Forward rendering played a
major role in graphics for the past 50 years, with significant bodies
of work on predictive and film rendering (e.g., Pharr et al. [2016])
and interactive techniques targeting gaming and visualization (e.g.,
Akenine-Moller et al. [2018]). There are common simplifications
that reduce cost by assuming scenes remain static or have fixed
animations.
Until recently, forward rendering for truly dynamic scenes was

often quite biased, with image appeal trumping predictive conver-
gence properties as rasterization efficiency pushed renderers to
use approximations like ambient occlusion [Bavoil and Sainz 2009],
image-space ray tracing [McGuire and Mara 2014], probe-based
global light [McGuire et al. 2017], and precomputed lightmaps [Seyb
et al. 2020] rather than more accurate light transport.

While researchers [Laine et al. 2020; Liu et al. 2019] have demon-
strated differentiable rasterization, it remains limited to fairly simple
scenes involving primary visibility.

Recent ray tracing hardware [Burgess 2020] offers an opportunity
to use unbiased, physics-based light transport while dynamically
changing a scene each frame, but current per-pixel ray budgets
have limited use in many renderers to improve shadows [Heitz et al.
2018], reflections [Deligiannis and Schmid 2019], and diffuse global
illumination [Majercik et al. 2019].

Resampling and ReSTIR. Recent work builds on importance resam-
pling [Talbot et al. 2005] to amortize ray costs, aiming to minimize
rendering overhead in dynamic scenes by spatiotemporally reusing
sampled rays [Bitterli et al. 2020]. This reservoir-based spatiotempo-
ral importance sampling, aka ReSTIR, observes that spatially- and
temporally-neighboring integrals have similar forms. With careful
reweighting, samples can be reused despite being pulled from differ-
ent integration domains [Lin et al. 2022]. This is a form of filtering,
similar to post-process denoisers [Schied et al. 2017], but applied to
the sampling pdfs. While it assumes signals change smoothly, edge-
stopping functions and similar image-processing tricks [Durand and
Dorsey 2002] can be applied to better handle sharper discontinuities.

While we build on Bitterli et al.’s [2020] early formulation to effi-
ciently sample complex many-light dynamic scenes, ReSTIR can also
reuse complex paths including diffuse global illumination [Ouyang
et al. 2021], volumetric media [Lin et al. 2021], and more complex
multi-bounce light transport [Lin et al. 2022].

Physics-based differentiable rendering. A main challenge in devel-
oping general-purpose differentiable renderers has been differentiat-
ing with respect to scene geometry, which generally requires calcu-
lating additional boundary integrals. To address this, Li et al. [2018]
introduced a Monte Carlo edge-sampling method giving unbiased
estimates of boundary integrals, but it requires detecting object sil-
houettes, which can be expensive. Later, reparameterization-based
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ALGORITHM 1: Streaming resampled importance sampling (RIS)
[Bitterli et al. 2020]
1 UpdateReservoir(r, 𝑥 , w)
Input: A reservoir r, a new candidate 𝑥 with the weight w

2 begin
3 r.wsum ← r.wsum +w;
4 if rand( ) < w/r.wsum then
5 r.𝒚 ← 𝑥 ;
6 end
7 r.𝑀 ← r.𝑀 + 1;
8 end
9 StreamingRIS(𝑀)
Input: Number of candidates𝑀 ≥ 1

10 begin
11 r.wsum ← 0;
12 r.𝑀 ← 0;
13 for𝑚 = 1, 2, . . . , 𝑀 do
14 Draw 𝑥𝑚 ∼ 𝑝c;
15 UpdateReservoir(r, 𝑥 , 𝑝 (𝑥𝑚 )/𝑝c (𝑥𝑚 )) ; // Updating r

16 end
17 r.𝑊 ← r.wsum/(𝑝 (r.𝒚 ) r.𝑀 ) ;
18 return r;
19 end

methods [Loubet et al. 2019; Bangaru et al. 2020] were introduced
to avoid computing boundary integrals. Further, by differentiating
Veach’s path integrals [1997], Zhang et al. [2020] formulated differ-
ential path integrals, extendingMonte Carlo differentiable rendering
beyond unidirectional path tracing.

Additionally, severalMonte Carlo samplingmethods [Zeltner et al.
2021; Zhang et al. 2021a; Yan et al. 2022; Yu et al. 2022] and efficient
differentiation techniques [Nimier-David et al. 2020; Vicini et al.
2021] have improved the performance of differentiable rendering.
All these methods, unfortunately, focus on static scenes.

Below, based on Zhang et al.’s formulation, we introduce new
methods for efficient differentiable rendering of dynamic scenes.

Concurrent works. The idea of adopting animation-rendering tech-
niques for inverse rendering has recently been explored by two
concurrent works. Specifically, Chang et al. [2023] introduced a
parameter-space ReSTIR method that focuses on material recon-
struction and is closely related to our approach for interior integrals
(§4). On the other hand, by neglecting boundary integrals (§5), this
technique does not offer variance reduction for shape optimizations.
Another concurrent work applies recursive control variate for

inverse rendering [Nicolet et al. 2023]. This technique applies vari-
ance reduction for forward rendering only and is largely orthogonal
to our technique.

3 PRELIMINARIES

3.1 Direct Illumination
Under a path-integral formulation [Veach 1997; Pauly et al. 2000]
of the rendering equation for surface-only direct illumination, the

intensity 𝐼 of a pixel is given by

𝐼 =

∫
𝛀

𝑓 (�̄�) d` (�̄�), (1)

where 𝛀 =M3 (withM the union of all surfaces) is the one-bounce
path space containing light paths �̄� = (𝒙0, 𝒙1, 𝒙2) with 𝒙0 on the
light and 𝒙2 on the detector; ` is the area-product measure given by
d` (�̄�) = ∏2

𝑛=0 d𝐴(𝒙𝑛); and 𝑓 is themeasurement contribution
function defined as

𝑓 (�̄�) = 𝐿e (𝒙0 �𝒙1)𝐺 (𝒙0↔𝒙1) 𝑓s (𝒙0 �𝒙1 �𝒙2)
𝐺 (𝒙1↔𝒙2)𝑊e (𝒙1 �𝒙2). (2)

Here 𝐿e and𝑊e are the source emission and detector response
functions, respectively; 𝑓s is the bidirectional scattering distri-
bution function (BSDF); and 𝐺 denotes the (visibility-aware) geo-
metric term.
The pixel intensity 𝐼 in Eq. (1) is often estimated by (i) tracing

a camera ray from 𝒙2 that intersects the scene at surface 𝒙1 ∈ M,
and (ii) sampling point 𝒙0—which we term a light vertex—on the
surface of a light source. This gives a Monte Carlo estimator:

⟨𝐼 ⟩ = 𝑊e (𝒙1 �𝒙2)𝐺 (𝒙1↔𝒙2)
𝑝 (𝒙1, 𝒙2)

𝐿e (𝒙0 �𝒙1) 𝑓s (𝒙0 �𝒙1 �𝒙2)𝐺 (𝒙0↔𝒙1)
𝑝 (𝒙0 | 𝒙1, 𝒙2)

, (3)

for 𝑝 (𝒙1, 𝒙2) the joint probability density of sampling 𝒙1, 𝒙2 and
𝑝 (𝒙0 | 𝒙1, 𝒙2) the conditional probability density of drawing 𝒙0.

In practice, the camera ray from 𝒙2 to 𝒙1 can be sampled using
standard ray tracing. In the rest of this paper, we assume the per-
spective pinhole camera model. In this case, 𝒙2 becomes fixed at
the center of projection and 𝒙1 is obtained by tracing a ray from 𝒙2
through a randomly selected point on the image plane.

With 𝒙1 and 𝒙2 obtained, importance sampling the light vertex 𝒙0
remains challenging—especially under complex illumination and
visibility. Bitterli et al. [2020] recently introduced a technique that
efficiently samples 𝒙0. We briefly revisit this work in §3.2 and build
on it later.

3.2 Reservoir-based SpatioTemporal Importance
Resampling (ReSTIR) for Direct Illumination

Resampled importance sampling. Monte Carlo estimation of

𝐼 =

∫
ℎ(𝒙) d𝒙, (4)

requires generating samples 𝒙 with probability density proportional
to some function 𝑝 (e.g., 𝑝 = ℎ when ℎ is nonnegative). But for
complicated 𝑝 , analytically sampling from this probability density
can be difficult.

Instead, resampled importance sampling (RIS) [Talbot et al. 2005]
samples from a simple randomized distribution approximating 𝑝 .
First, RIS draws𝑀 independent candidates {𝒙1, . . . , 𝒙𝑀 } from some
other distribution 𝑝c. Then, one sample 𝒚 is selected from the 𝑀
candidates with (discrete) probability P[𝒚 = 𝒙𝑚] proportional to

w(𝒙𝑚) := 𝑝 (𝒙𝑚)
𝑝c (𝒙𝑚)

, (5)
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for𝑚 = 1, 2, . . . , 𝑀 . This gives a one-sample RIS estimator of Eq. (4):

⟨𝐼 ⟩𝑀ris =
ℎ(𝒚)
𝑝 (𝒚)

(
1
𝑀

𝑀∑︁
𝑚=1

w(𝒙𝑚)
)
. (6)

Naïve implementations of Eq. (6) generate and store all 𝑀 can-
didates 𝒙1, . . . , 𝒙𝑀 before selecting final sample 𝒚. This can be in-
efficient. Bitterli et al. [2020] proposed a streaming version using
weighted reservoir sampling (WRS) [Chao 1982] offering significantly
better efficiency.
Algorithm 1 summarizes this method, which processes a candi-

date stream and maintains a reservoir structure r. After handling
candidate 𝒙𝑚 inside UpdateReservoir(), reservoir r stores the fol-
lowing data: (i) a sum of weights r.wsum =

∑𝑚
𝑖=1 w(𝑥𝑖 ); (ii) a count

of candidates processed r.𝑀 =𝑚; and (iii) a sample r.𝒚 randomly
drawn from prior candidates {𝒙1, . . . , 𝒙𝑚} with selection probabil-
ity P[r.𝒚 = 𝒙𝑖 ] = w(𝒙𝑖 )/r.wsum for all 𝑖 = 1, 2, . . . ,𝑚. One can easily
evaluate the RIS estimator in Eq. (6) using the reservoir r output
from StreamingRIS() using ⟨𝐼 ⟩𝑀ris = ℎ(r.𝒚) r.𝑊 .

Reservoir-based spatiotemporal importance resampling. To esti-
mate direct illumination using Eq. (3), after generating the camera
ray 𝒙2 �𝒙1, RIS (Algorithm 1) can be used to select the light vertex
𝒙0 by setting the target function 𝑝 to the measurement contribution
of the path (𝒙0, 𝒙1, 𝒙2). However, under complex illumination con-
ditions, RIS needs to use many candidates (i.e., large𝑀) to achieve
high efficiency, which is typically impractical.

To address this problem, Bitterli et al. [2020] introduced reservoir-
based spatiotemporal importance resampling (ReSTIR) that amortizes
sampling costs by reusing spatial and temporal candidates via itera-
tive applications of RIS.
Specifically, when rendering a pixel, ReSTIR first generates a

reservoir using RIS (Algorithm 1). Then, the reservoir is merged
with reservoirs from various neighboring pixels (i.e., spatial reuse)
as well as prior frames (i.e., temporal reuse). To ensure unbiasedness,
Bitterli et al. [2020] proposed recomputing r.𝑊 after determining
the sample r.𝒚, as expressed in Algorithm 2.1 This is because the
target function 𝑝 (𝑞) for a pixel 𝑞 generally differs from those 𝑝 (𝑞𝑖 )
for its spatial/temporal neighbors 𝑞𝑖 . Further, precautions must be
taken when evaluating 𝑝 (𝑞𝑖 ) (r.𝒚) (Line 9 of Algorithm 2) when
𝑞𝑖 is from the previous frame (i.e., via temporal reuse) and the
scene geometry varies between the previous and the current frames.
Specifically, the evaluation should use the scene geometry of the
previous frame with the light sample r.𝒚 moved accordingly (by,
for example, using motion vectors).

Algorithm 2 has recently been generalized by Lin et al. [2022] to
allow reusing samples from a wider range of domains (including
full path samples from varying domains).

3.3 Differential Direct Illumination
In physics-based differentiable rendering, Zhang et al. [2020; 2021b]
recently introduced a formulation of differential path integrals as
well as several associated Monte Carlo estimators. Below, we briefly
describe how these apply to direct illumination.

1Our Algorithm 2 is identical to Algorithm 6 in Bitterli et al.’s [2020] work. Please refer
to their paper for a proof of unbiasedness.

ALGORITHM 2: Combining reservoirs from spatial and temporal
neighbors [Bitterli et al. 2020]
1 SpatiotemporalReuse(r, 𝑞,𝑄 ′ , 𝑃 ′)
Input: Reservoir r for pixel 𝑞; reservoirs𝑄 ′ = {r1, . . . , r𝑘 } from

pixels 𝑃 ′ = {𝑞1, . . . , 𝑞𝑘 } to combine
Output: One combined reservoir

2 begin
3 for 𝑖 = 1, . . . , 𝑘 do
4 UpdateReservoir(r, r𝑖 .𝒚 , 𝑝 (𝑞) (r.𝒚 ) r.𝑊 r.𝑀)

5 end
6 r.𝑀 ← ∑𝑘

𝑖=1 r𝑖 .𝑀 ;
7 𝑍 ← 0;
8 for 𝑖 = 1, . . . , 𝑘 do
9 if 𝑝 (𝑞𝑖 ) (r.𝒚 ) > 0 then
10 𝑍 ← 𝑍 + r𝑖 .𝑀 ;
11 end
12 end
13 r.𝑊 ← r.wsum/(𝑝 (𝑞) (r.𝒚 ) 𝑍 ) ;
14 return r;
15 end

When scene geometry M evolves with parameters 𝜽 ∈ R𝑚𝜽

(for integer𝑚𝜽 ≥ 1), Zhang et al. proposed a material-form repa-
rameterization to facilitate differentiating Eq. (1) with respect to 𝜽 .
This parameterization introduces amotion X such that for any 𝜽 ,
X(·, 𝜽 ) is a differentiable one-to-one mapping from some predeter-
mined reference configuration B (independent of parameters 𝜽 )
to the scene geometryM(𝜽 ). To distinguish points in the ordinary
geometry from those in the reference configuration, we term any
𝒙 ∈ M(𝜽 ) as spatial points and 𝒑 ∈ B asmaterial points.

The mapping X(·, 𝜽 ) induces a path-level map X̄(·, 𝜽 ) that takes a
one-bouncematerial path �̄� = (𝒑0,𝒑1,𝒑2) to an ordinary path �̄� =

(𝒙0, 𝒙1, 𝒙2) where 𝒙𝑛 = X(𝒑𝑛, 𝜽 ) for 𝑛 = 0, 1, 2.
Applying the change of variable of �̄� = X̄(�̄�, 𝜽 ) to Eq. (1) yields

its material-form variant:

𝐼 =

∫
�̂�

𝑓 (�̄�) d` (�̄�), (7)

where �̂� := B3 is termed thematerial path space, and

𝑓 (�̄�) := 𝑓 (�̄�)
 d` (�̄�)

d` (�̄�)

 , (8)

with ∥d` (�̄� )/d` (�̄�)∥ = ∏2
𝑛=0 ∥d𝐴(𝒙𝑛 )/d𝐴(𝒑𝑛 )∥ being the Jacobian de-

terminant capturing this change of variable.
Zhang et al. showed differentiating Eq. (7) with respect to 𝜽 equals

d𝐼
d𝜽 =

interior∫
�̂�

d
d𝜽 𝑓 (�̄�) d` (�̄�) +

boundary∫
𝜕�̂�

Δ𝑓𝐾 (�̄�)
(
𝒏𝜕 (𝒑𝐾 )⊤

d𝒑𝐾
d𝜽

)
d ¤̀ (�̄�) ,

(9)

where the interior component comes from differentiating the inte-
grand 𝑓 of Eq. (7).
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The boundary integral instead covers material boundary path
space 𝜕�̂�, is unique to differentiable rendering, and usually depends
on scene parameters 𝜽 . For direct lighting, 𝜕�̂� comprises material
boundary paths �̄� = (𝒑0,𝒑1,𝒑2) with exactly one boundary
segment 𝒑𝐾 𝒑𝐾+1 (𝐾 ∈ {0, 1}) such that corresponding spatial
point 𝒙𝐾 = X(𝒑𝐾 , 𝜽 ) is a jump discontinuity of the mutual visibility
function V(𝒙𝐾 ↔ 𝒙𝐾+1) when fixing 𝒙𝐾+1 = X(𝒑𝐾+1, 𝜽 ). Further,
𝒏𝜕 (𝒑𝐾 )⊤ ∈ R1×3 is the unit normal of the visibility boundary at
𝒑𝐾 , and d𝒑𝐾/d𝜽 ∈ R3×𝑚𝜽 is the boundary gradient. The differential
measure ¤̀ over 𝜕�̂� is given by d ¤̀ (�̄�) = dℓ (𝒑𝐾 )

∏
𝑛≠𝐾 d𝐴(𝒑𝑛) with

ℓ being the curve-length measure.

Choice of reference configuration. In practice, to estimate gradients
at 𝜽 = 𝜽 0 we use B = M(𝜽 0) as the reference configuration for
convenience. In this case, the material path space �̂� coincides with
ordinary path space 𝛀, and mapping X(·, 𝜽 ) reduces to the identity.
In other words, a material point 𝒑 is essentially the detached copy
of its spatial representation 𝒙 = X(𝒑, 𝜽 ) at 𝜽 = 𝜽 0.

We note that while the Jacobian ∥d` (�̄� )/d` (�̄�)∥ in Eq. (8) is one at
𝜽 = 𝜽 0, its gradient with respect to 𝜽 generally remains nonzero.

3.4 Inverse Rendering and Radiative Backpropagation
Inverse-rendering optimizations. Optimization-based inverse ren-

dering, or analysis by synthesis, infers scene parameters 𝜽 ∈ R𝑚𝜽

by minimizing a predetermined rendering loss L (e.g., 𝐿1 or 𝐿2) be-
tween rendered images2 I ∈ R𝑚I with𝑚I pixels and user-specified
targets I0 ∈ R𝑚I :

arg min
𝜽
L(I (𝜽 ); I0) . (10)

In practice, additional regularization improves robustness. We omit
such details as they are largely orthogonal to our work.

Minimizing Eq. (10) with gradient-based methods such as stochas-
tic gradient descent (SGD) or Adam [Kingma and Ba 2014] requires
differentiating the rendering loss L with respect to parameters 𝜽 .
According to the chain rule, the gradient d𝜽L := dL/d𝜽 satisfies

d𝜽L = (𝜕IL) (d𝜽 I), (11)

where 𝜕IL := 𝜕L/𝜕I on the right comes from differentiable evalua-
tion of the loss L, and d𝜽 I := dI/d𝜽 is given by Eq. (9).

Radiative backpropagation. When the number of parameters𝑚𝜽
and pixels 𝑚I are large, storing the rendered image I and full
computational graph (for reverse-mode automatic differentiation
[Griewank and Walther 2008]) can lead to performance and storage
problems. To this end, previous methods [Nimier-David et al. 2020;
Vicini et al. 2021] apply the chain rule in Eq. (11) at the path-integral
level. We do this by left-multiplying the gradient 𝜕IL on both sides

2We assume all images are gray-scale (with scalar pixel values) for notational simplicity.

of Eq. (9), yielding:

d𝜽L =

interior∫
�̂�

(𝜕IL)[𝑞]
(

d
d𝜽 𝑓

(𝑞) (�̄�)
)

d` (�̄�) +

boundary∫
𝜕�̂�

(𝜕IL)[𝑞] Δ𝑓
(𝑞)
𝐾
(�̄�)

(
𝒏𝜕 (𝒑𝐾 )⊤

d𝒑𝐾
d𝜽

)
d ¤̀ (�̄�) ,

(12)

where 𝑞 denotes the pixel index where the path �̄� contributes, and
(𝜕IL)[𝑞] ∈ R indicates the value in 𝜕IL at pixel 𝑞 (where I and
𝜕IL have the same shape). Also, 𝑓 (𝑞) denotes the material mea-
surement contribution of the path �̄� to pixel 𝑞, and Δ𝑓

(𝑞)
𝐾

indicates
the difference in 𝑓 (𝑞) across visibility boundaries (as per §3.3).
In §4 and §5, we derive our ReSTIR algorithms that efficiently

estimate the interior and boundary integrals on the right-hand side
of Eq. (12) for optimization-based inverse rendering.

4 RESTIR FOR INTERIOR INTEGRALS
We now describe our ReSTIR-based method to efficiently estimate
the (vector-valued) interior component of Eq. (12):

(d𝜽L)int :=
∫
�̂�

(𝜕IL)[𝑞]
(

d
d𝜽 𝑓

(𝑞) (�̄�)
)

d` (�̄�). (13)

When computing gradients at a fixed 𝜽 = 𝜽 0, as discussed in §3.3,
we set the reference configuration to B =M(𝜽 0). Note that during
inverse-rendering optimization, 𝜽 0 varies at each gradient step.

Overview. We introduce our differentiable RIS estimator in §4.1
followed by the full ReSTIR version—our main contribution of this
section—in §4.2. Lastly, we discuss the relation between our method
and forward-rendering ReSTIR as well as several other technical
aspects in §4.3.

4.1 Differentiable Streaming RIS
Estimating Eq. (13) via Monte Carlo integration requires sampling
material light paths �̄� = (𝒑0,𝒑1,𝒑2). Since thematerial path space �̂�
coincides with the ordinary one 𝛀(𝜽 0), we can sample �̄� by repur-
posing methods developed for forward rendering.

We first construct a camera ray from 𝒑2 and compute the closest
intersection 𝒑1 between this ray and the scene (specifically, the
reference configuration B). With 𝒑1 and 𝒑2 determined, we apply
streaming RIS (Algorithm 1) to sample 𝒑0 on a light source by
letting3

𝑝 (𝒑0;𝒑1) = 𝐿e (𝒑0 �𝒑1) 𝑓s (𝒑0 �𝒑1 �𝒑2)𝐺 (𝒑0↔𝒑1), (14)
and 𝑝c (𝒑0) provided by standard light sampling (i.e., being pro-
portional to emitted radiance 𝐿e (𝒑0 � 𝒑1)). Using the resulting
reservoir r from𝑀 candidate light samples, we obtain a one-sample
differential RIS estimator:

⟨(d𝜽L)int⟩𝑀ris =
(𝜕IL)[𝑞] r.𝑊

𝑝 (𝒑1)

(
d

d𝜽 𝑓
(𝑞) (�̄�)

)
, (15)

where �̄� = (r.𝒚, 𝒑1, 𝒑2) and r.𝒚 is the reservoir’s stored sample.
3On the left hand side of Eq. (14), we omit the dependency of 𝑝 on 𝒑2 because, for
perspective pinhole cameras—which is the case we focus on, 𝒑2 is constant.
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ALGORITHM 3: Combining reservoirs from spatial and temporal
neighbors
1 SpatiotemporalReuse(r,𝑄)
Input: Reservoir r; reservoirs𝑄 = {r1, . . . , r𝑘 } to combine
Output: One combined reservoir

2 begin
3 for 𝑖 = 1, . . . , 𝑘 do
4 UpdateReservoir(r, r𝑖 .𝒚 , 𝑝 (r.𝒚; r.𝒑) r.𝑊 r.𝑀)

5 end
6 r.𝑀 ← ∑𝑘

𝑖=1 r𝑖 .𝑀 ;
7 𝑍 ← 0;
8 for 𝑖 = 1, . . . , 𝑘 do
9 if 𝑝 (r.𝒚; r𝑖 .𝒑) > 0 then
10 𝑍 ← 𝑍 + r𝑖 .𝑀 ;
11 end
12 end
13 r.𝑊 ← r.wsum/(𝑝 (r.𝒚; r.𝒑) 𝑍 ) ;
14 return r;
15 end

In practice, we efficiently compute Eq. (15) by applying reverse-
mode automatic differentiation (AD) to

detach

(
(𝜕IL)[𝑞] r.𝑊

𝑝 (𝒑1)

)
𝑓 (𝑞) (�̄�), (16)

where quantities surrounded by the detach() function are treated
as constants (i.e., independent of 𝜽 ) by AD.

4.2 Spatiotemporal Reuse
Building on our differential streaming RIS estimator in Eq. (15),
we introduce a ReSTIR algorithm to reuse spatial and temporal
candidates. Note that unlike forward rendering, where temporal
reuse applies to neighboring frames, our technique reuses temporal
candidates on consecutive inverse-rendering gradient steps.
As outlined in Algorithm 4, our method consists of path sam-

pling and gradient computation stages with only the latter needing
differentiable computation. We detail both stages below.

Path sampling. This stage samples a set of material light paths �̄� =

(𝒑0,𝒑1,𝒑2) that are later used to compute gradients. As discussed in
§4.1, we sample the path by: (i) constructing a camera ray from𝒑2 on
the detector and intersecting the scene at 𝒑1 (Line 6 of Algorithm 4);
and (ii) drawing 𝒑0 on a light source using streaming RIS (Line 7).
To improve RIS effectiveness, we reuse reservoirs from the pre-

vious gradient step (Line 24). To this end, we record the shading
point 𝒑1 (where RIS occurs) in each reservoir as r.𝒑 (Line 8). After
obtaining a reservoir r using RIS, we find neighbor reservoirs𝑄 such
that each r′ ∈ 𝑄 has its shading point r′ .𝒑 near r.𝒑 (Line 9). We
accelerate this nearest neighbor search using point Kd-trees [Wald
2022]. After finding neighbors 𝑄 , we combine them with r using
Algorithm 3 (Line 10), which is equivalent to Algorithm 2 except
for having the target function 𝑝 (·;𝒑′) defined with respect to a
shading point 𝒑′ (as opposed to a pixel). The light sample r.𝒚 after
combining reservoirs completes the path sample �̄� = (r.𝒚, 𝒑1, 𝒑2).

ALGORITHM 4: Our streaming RIS with spatiotemporal reuse for
the interior integral in Eq. (13)
1 EstInterior(prevReservoirs)
2 begin

/* Sampling light paths (non-differentiable) */

3 updateInteriorReservoirs(prevReservoirs) ; // §4.2

4 paths← {}; reservoirs← {};
5 foreach pixel 𝑞 do

/* Sample camera ray through pixel 𝑞 */

6 Sample 𝒑1 with the pdf 𝑝 (𝒑1 ) ;
/* Generate initial candidates */

7 Generate reservoir r using streaming RIS ; // §4.1

8 r.𝒑 ← 𝒑1 ; // Record shading point

/* Spatiotemporal reuse */

9 𝑄 ← PickNeighbors(prevReservoirs, r) ; // §4.2

10 r← SpatiotemporalReuse(r, 𝑄 ) ; // Alg. 3

/* Store sampled path */

11 paths[𝑞 ] .vtx← (r.𝒚, 𝒑1, 𝒑2 ) ;
12 paths[𝑞 ] .pdf ← 𝑝 (𝒑1 )/r.𝑊 ;

/* Store reservoir */

13 reservoirs[𝑞 ] ← r;
/* Forward rendering */

14 I [𝑞 ] ← 𝑓 (𝑞) (paths[𝑞 ] .vtx)/paths[𝑞 ] .pdf ;
15 end

/* Gradient computation (differentiable) */

16 Compute rendering loss L using rendered image I;
17 𝜕IL ← backward(L) ; // Compute 𝜕IL := 𝜕L/𝜕I
18 (d𝜽 L)int ← 0;
19 foreach pixel 𝑞 do
20 �̄�, pdf ← paths[𝑞 ] .vtx, paths[𝑞 ] .pdf ;
21 𝐼 ← detach(𝜕IL[𝑞 ]/pdf ) 𝑓 (𝑞) (�̄�) ; // Eq. (16)

/* Back-propagate gradients */

22 (d𝜽 L)int ← (d𝜽 L)int + backward(𝐼 ) ;
23 end
24 return (d𝜽 L)int, 𝜕IL, reservoirs;
25 end

Updating reservoirs. We note that as previous parameters 𝜽prev
generally differ from current step values 𝜽 cur, reservoirs must be
updated (Line 3) before reuse. Specifically, any prior step reservoir r
stores light sample r.𝒚 and shading point r.𝒑 from prior reference
configuration Bprev =M(𝜽prev). The current step must instead use
reference configuration Bcur =M(𝜽 cur).
To keep r.𝒚 and r.𝒑 updated, we focus on the common inverse-

rendering setting that represents scene geometriesM(𝜽prev) and
M(𝜽 cur) with triangle meshes of identical topology (but possibly
differing vertex positions). We record indices of triangles contain-
ing r.𝒚 and r.𝒑 and corresponding barycentric coordinates. Then,
during the updateInteriorReservoirs() on Line 3, we recom-
pute r.𝒚 and r.𝒑 for each reservoir from the stored triangle indices,
barycentrics, and now-current vertex positions (see Figure 2). Lastly,
after updating all reservoirs, we rebuild the acceleration structure
used for efficient nearest-neighbor search (Line 9).
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Fig. 2. Updating a reservoir’s light sample 𝒚cur from 𝒚prev in the previous
gradient step uses stored triangle ID and barycentric coordinates along with
new vertex positions from Bcur.

Gradient computation. After path sampling, our gradient com-
putation evaluates path contributions using Eq. (15) with gradi-
ent d𝑓 (𝑞)/d𝜽 obtained using reverse-mode automatic differentiation.
As differentiation of 𝑓 (𝑞) is local (i.e., occurs per path), no global
computation graph is needed—similar to previous radiative back-
propagation methods [Nimier-David et al. 2020; Vicini et al. 2021].

4.3 Discussion
Relation to forward-rendering ReSTIR. Although our ReSTIR-based

technique expressed in §4.2 is closely related to forward-rendering
ReSTIR [Bitterli et al. 2020; Lin et al. 2022], there are several technical
differences. Notably, previous ReSTIR methods store reservoirs in
the screen space. Our method, on the other hand, stores reservoirs
at shading points r.𝒑 over the reference surface B. Doing so not
only allows our stored reservoirs to evolve with the scene geometry
naturally, but also enables efficient multi-view rendering with mini-
batching—which we will discuss in §7.

Visibility awareness. The original ReSTIR by Bitterli et al. [2020]
proposed an option that neglects visibility from light vertex 𝒑0 to
the shading point 𝒑1 for faster forward rendering:

𝑝 (𝒑0) = 𝐿e (𝒑0 �𝒑1) 𝑓s (𝒑0 �𝒑1 �𝒑2)𝐺0 (𝒑0↔𝒑1), (17)

with 𝐺0 the geometric term 𝐺 with visibility V(𝒑0↔𝒑1) omitted.
Instead, we consider the full visibility in Eq. (14)—which has been

demonstrated necessary for ensuring unbiasedness [Bitterli et al.
2020; Lin et al. 2022]. Further, this allows the sampling of 𝒑0 to be
more occlusion-aware, improving result quality.

Rejecting reservoirs. Occasionally, a prior reservoir r′ (returned
by the PickNeighbors() function) near the current one r can have
a very different surface normal. In other words, 𝒏(r′ .𝒑) ·𝒏(r.𝒑) ≪ 1
with 𝒏(𝒑) the surface normal at 𝒑. In this case, we follow Bitterli
et al. and exclude any reservoirs r′ with 𝒏(r′ .𝒑) · 𝒏(r.𝒑) below
some user-specified threshold from the SpatiotemporalReuse ()
call.

5 RESTIR FOR BOUNDARY INTEGRALS
We now show how to apply ReSTIR to estimate the boundary com-
ponent of Eq. (12) from §3.3:

(d𝜽L)bnd :=
∫
𝜕�̂�

(𝜕IL)[𝑞] Δ𝑓
(𝑞)
𝐾
(�̄�)

(
𝒏𝜕 (𝒑𝐾 )⊤

d𝒑𝐾
d𝜽

)
d ¤̀ (�̄�) .

(18)

(a) Primary (b) Secondary

Fig. 3. Primary and secondary boundary paths with boundary segments in
red. We estimate contributions of these paths separately (§5.1 and §5.2).

Since this boundary integral is unique to differentiable rendering,
our technique, to our knowledge, is the first to utilize ReSTIR for
efficient estimation of these integrals.

Two types of boundary paths. Recall that a material boundary
path �̄� is identical to an ordinary path except it has exactly one
boundary segment. For direct illumination, shown in Figure 3, there
are two boundary paths types depending on the location of boundary
segment 𝒑𝐾 𝒑𝐾+1. Any path with 𝐾 = 1 has endpoint 𝒑2 on the
detector and is called a primary boundary path; any with 𝐾 = 0
has endpoint 𝒑0 on a light and is called a secondary boundary
path (see Figure 3).

Previously, contributions from primary paths could be estimated
relatively easily, but the secondary ones remained more challenging.
In §5.1 and §5.2, we design new ReSTIR-based estimators specifically
to sample both types of boundary paths.

5.1 Sampling Primary Boundary Paths
A primary boundary path has its boundary segment on the camera
ray (see Figure 3-a). Similar to sampling ordinary paths (in §4.1),
we generate a primary boundary path by: (i) constructing a camera
ray defining 𝒑1 and 𝒑2; and (ii) drawing 𝒑0 on a light source. In
the first step, we efficiently pick the camera ray using Monte Carlo
edge sampling [Li et al. 2018] with object silhouettes projected onto
the image plane during preprocessing.

With 𝒑1 and 𝒑2 determined, we sample the light vertex 𝒑0 using
streaming RIS (Algorithm 1) with the same 𝑝 and 𝑝c functions as the
interior integral (§4). This gives the following RIS-based estimator:〈
(d𝜽L)

pri
bnd

〉𝑀
ris

=
(𝜕IL)[𝑞] Δ𝑓

(𝑞)
1 (�̄�) r.𝑊

𝑝 (𝒑1)

(
𝒏𝜕 (𝒑1)⊤

d𝒑1
d𝜽

)
, (19)

where �̄� = (r.𝒚, 𝒑1, 𝒑2).
In practice, we efficiently compute Eq. (19) by applying reverse-

mode automatic differentiation to

detach
©«
(𝜕IL)[𝑞] Δ𝑓

(𝑞)
1 (�̄�) r.𝑊

𝑝 (𝒑1)
𝒏𝜕 (𝒑1)

ª®¬ · 𝒑1, (20)

where “·” denotes a dot product, and 𝒑1 outside the detach() func-
tion is determined by differentiable ray intersection between the
camera ray and the scene.

Spatiotemporal reuse. The similarity in sampling 𝒑0 for ordinary
and primary boundary paths allows us to improve the effectiveness
of our boundary estimator in Eq. (19) by reusing reservoirs generated
to estimate the interior component (discussed in §4).
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ALGORITHM 5: Our streaming RIS with spatiotemporal reuse for
primary boundary paths
1 EstPrimaryBound(𝜕IL, prevReservoirs)
2 begin
3 (d𝜽 L)

pri
bnd ← 0;

/* Sampling boundary paths (non-differentiable) */

4 paths← {};
5 for 𝑖 = 1 to 𝑁pri do
6 Sample 𝒑1 with pdf 𝑝 (𝒑1 ) ; // MC edge sampling

7 Let 𝑞 be the index of the pixel intersecting 𝒑1 𝒑2;
/* Generate initial candidates */

8 Generate reservoir r using stream RIS ; // §4.1

/* Spatiotemporal reuse */

9 𝑄 ← PickNeighbors(prevReservoirs, r) ; // §4.2

10 r← SpatiotemporalReuse(r, 𝑄 ) ; // Alg. 3

/* Store sampled path */

11 paths[𝑖 ] .pid← 𝑞 ; // Record pixel index

12 paths[𝑖 ] .vtx← (r.𝒚, 𝒑1, 𝒑2 ) ;
/* Record the detached factor of Eq. (20) */

13 pdf ← 𝑝 (𝒑1 ) 𝑁pri/r.𝑊 ;
14 paths[𝑖 ] .vec← 𝜕IL[𝑞 ] Δ𝑓 (𝑞) (�̄�) 𝒏𝜕 (𝒑1 )/pdf
15 end

/* Gradient computation (differentiable) */

16 for 𝑖 = 1 to 𝑁pri do
17 𝑞, �̄�, 𝒗 ← paths[𝑖 ] .pid, paths[𝑖 ] .vtx, paths[𝑖 ] .vec;
18 Re-compute 𝒑1 using differentiable ray intersection;
19 𝐼 ← detach(𝒗 ) · 𝒑1 ; // Eq. (20)

/* Back-propagate gradients */

20 (d𝜽 L)
pri
bnd ← (d𝜽 L)

pri
bnd + backward(𝐼 ) ;

21 end
22 return (d𝜽 L)

pri
bnd;

23 end

Specifically, Algorithm 5 outlines how we reuse these reservoirs
from the prior gradient step (and updated via updateReservoirs()
in Algorithm 4). Normally it requires only a few samples to estimate
the primary boundary, so we opt not to store new reservoirs (ob-
tained after Line 10) in Algorithm 5 to simplify the overall pipeline.

5.2 Sampling Secondary Boundary Paths
Unlike primary boundary paths, secondary paths (as illustrated in
Figure 3b) are more challenging as they need knowledge of object
silhouettes with respect to arbitrary shading locations 𝒑1.

Multi-directional sampling. Previously, Li et al. [2018] leveraged a
high-dimensional bounding volume hierarchy to accelerate silhou-
ette detection, but this remains prohibitively expensive for complex
geometry. Zhang et al. [2020] introduced a multi-directional sam-
pling technique to avoid explicit detection of object silhouettes.
Specifically, they build a secondary boundary path in three steps:
S.1 Sample point 𝒑B from a triangle edge with probability 𝑝 (𝒑B);

sample light vertex 𝒑0 with conditional probability 𝑝 (𝒑0 | 𝒑B).

S.2 If 𝒑0 and 𝒑B are mutually visible, trace a ray from 𝒑B in direc-

tion
−−−−→
𝒑0 𝒑

B to find intersection 𝒑1. This guarantees 𝒑0 𝒑1 is a
boundary segment.

S.3 Complete path �̄� = (𝒑0,𝒑1,𝒑2) with 𝒑2 being the perspective
camera’s center of projection.

This sampling process gives an ordinary Monte Carlo estimator:〈
(d𝜽L)snd

bnd

〉
=
𝐹 snd

bnd (𝒑
B,𝒑0,𝒑2)

𝑝 (𝒑B) 𝑝 (𝒑0 | 𝒑B)

(
𝒏𝜕 (𝒑0)⊤

d𝒑0
d𝜽

)
, (21)

where
𝐹 snd

bnd (𝒑
B,𝒑0,𝒑2) := (𝜕IL)[𝑞] Δ𝑓

(𝑞)
0 (�̄�) 𝐽B (𝒑B,𝒑0), (22)

with
𝐽B (𝒑B,𝒑0) :=

 d𝐴(𝒑1) dℓ (𝒑0)
dℓ (𝒑B) d𝐴(𝒑0)

 , (23)

the Jacobian determinant for changing from joint probability density
𝑝 (𝒑0,𝒑1) to 𝑝 (𝒑B,𝒑0). Refer to Zhang et al. [2020] for more details,
including the derivation of 𝐽B.

Streaming RIS. The first step (S.1) in multi-directional sampling
draws light vertex 𝒑0 given 𝒑B on a triangle edge. For scenes with
complex illumination and visibility, sampling 𝒑0 via streaming RIS
(Algorithm 1) improves efficiency. To this end, given 𝒑B we set 𝑝 as

𝑝 (𝒑0; 𝒑B) = 𝐹 snd
bnd (𝒑

B,𝒑0,𝒑2), (24)

with 𝐹 snd
bnd defined in Eq. (22), and standard light sampling with pdf

𝑝c. Here we neglect gradient term
(
𝒏𝜕 (𝒑0)⊤

d𝒑0
d𝜽

)
as it is difficult to

obtain in the path sampling stage. This leads to our RIS estimator:〈
(d𝜽L)snd

bnd

〉𝑀
ris

=
𝐹 snd

bnd (𝒑
B,𝒑0,𝒑2) r.𝑊
𝑝 (𝒑B)

(
𝒏𝜕 (𝒑0)⊤

d𝒑0
d𝜽

)
, (25)

which essentially replaces 𝑝 (𝒑0 | 𝒑B) in the ordinary Monte Carlo
estimator of Eq. (21) with 1/r.𝑊 as 𝒑0 is now drawn with RIS.

With automatic differentiation, Eq. (25) can be computed as:

detach

(
𝐹 snd

bnd (𝒑
B,𝒑0,𝒑2) r.𝑊
𝑝 (𝒑B)

𝒏𝜕 (𝒑0)
)
· 𝒑0 . (26)

Spatiotemporal reuse. To improve our estimator’s efficiency, we in-
troduce a new spatiotemporal reuse scheme for secondary boundary
paths. As described in Algorithm 6, we record 𝒑B in each reservoir
r (Line 9) and use this point for nearest neighbor searches (Line 10),
rather than using shading point 𝒑1 as in our other computations.
After merging r with nearby reservoirs from the previous gradient
step, we trace a ray to obtain 𝒑1 (S.2) to complete the path sample
�̄� = (r.𝒚, 𝒑1, 𝒑2).

As in Algorithms 4 and 5, the sampled paths are then evaluated
using automatic differentiation (Line 24 of Algorithm 6) via Eq. (26).

Importance sampling of 𝒑B. Before drawing 𝒑0 on a light, Zhang
et al.’s [2020] multi-directional sampling picks 𝒑B from a triangle
edge (Line 7). A naïve implementation could (i) select an edge 𝒆𝑘
with probability 𝑝𝑘 proportional to edge length ∥𝒆𝑘 ∥; and (ii) draw
𝒑B uniformly from 𝒆𝑘 . But this loses efficiency in complex scenes if
it frequently returns samples 𝒑B not visible to any light.
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ALGORITHM 6: Our streaming RIS with spatiotemporal reuse for
secondary boundary paths
1 EstSecondaryBound(𝜕IL, prevEdgeReservoirs)
2 begin
3 (d𝜽 L)snd

bnd ← 0;
/* Sampling boundary paths (non-differentiable) */

4 updateEdgeReservoirs(prevEdgeReservoirs) ;
5 paths← {}; edgeReservoirs← {};
6 for 𝑖 = 1 to 𝑁snd do
7 Sample 𝒑B from an edge with pdf 𝑝 (𝒑B ) ;

/* Generate initial candidates */

8 Generate reservoir r using stream RIS ; // §5.2

9 r.𝒑 ← 𝒑B ; // Record edge point

/* Spatiotemporal reuse */

10 𝑄 ← PickNeighbors(prevEdgeReservoirs, r) ; // §5.2

11 r← SpatiotemporalReuse(r, 𝑄 ) ; // Alg. 3

/* Complete the path sample */

12 𝒑0 ← r.𝒚; 𝒑1 ← rayIntersect(𝒑B,
−−−→
𝒑0 𝒑

B ) ;
13 r.𝒑1 ← 𝒑1 ; // Used by Alg. 8

/* Store sampled path */

14 Let 𝑞 be the index of pixel intersecting 𝒑1 𝒑2;
15 paths[𝑖 ] .pid← 𝑞 ; // Record pixel index

16 paths[𝑖 ] .vtx← (𝒑0, 𝒑1, 𝒑2 ) ;
/* Record the detached factor of Eq. (26) */

17 pdf ← 𝑝 (𝒑𝐵 ) 𝑁snd/r.𝑊 ;
18 paths[𝑖 ] .vec← 𝐹 snd

bnd (𝒑
B, r.𝒚, 𝒑2 ) 𝒏𝜕 (𝒑0 )/pdf ;

/* Store reservoir */

19 edgeReservoirs[𝑖 ] ← r;
20 end

/* Gradient computation (differentiable) */

21 for 𝑖 = 1 to 𝑁snd do
22 𝑞, �̄�, 𝒗 ← paths[𝑖 ] .pid, paths[𝑖 ] .vtx, paths[𝑖 ] .vec;
23 Re-compute 𝒑0 using differentiable ray intersection;
24 𝐼 ← detach(𝒗 ) · 𝒑0 ; // Eq. (26)

/* Back-propagate gradients */

25 (d𝜽 L)snd
bnd ← (d𝜽 L)

snd
bnd + backward(𝐼 ) ;

26 end
27 return (d𝜽 L)snd

bnd, edgeReservoirs;
28 end

To address this problem, we leverage our reservoirs to guide edge
sampling as follows. For an edge 𝒆𝑘 containing 𝑛𝑘 reservoirs (i.e.,
𝑛𝑘 reservoirs r with r.𝒑 lying on 𝒆𝑘 ), we set its (discrete) sampling
probability 𝑝𝑘 to be proportional to the average weight of the 𝑛𝑘
reservoirs modulated by the edge length ∥𝒆𝑘 ∥:

𝑝𝑘 ∝
(∑

r∈𝒆𝑘 (r.wsum/r.𝑀)
𝑛𝑘

+ 𝜖
)
∥𝒆𝑘 ∥. (27)

Importance sampling for edges using Eq. (27) significantly improves
performance, as we demonstrate in §8.1.
Various guiding methods in primary-sample space [Zhang et al.

2020; Yan et al. 2022] have been proposed. They importance sample
both 𝒑B and 𝒑0 but require nontrivial precomputation. Instead, our
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Fig. 4. Pixel-level antithetic sampling: To differentiate pixel reconstruc-
tion filters using the PSDR formulation [Zhang et al. 2020], Yu et al. [2022]
showed pixel-level antithetic sampling is crucial to efficiently estimate deriva-
tives relative to object shape. (a) When computing interior integrals (§4),
for each camera ray intersection at 𝒑⊥, Yu et al. [2022] proposed generating
three correlated rays through 𝒑⊥1 , 𝒑

⊥
2 , and 𝒑⊥3 symmetrically around the

pixel center. (b) When handling pixel boundaries (§6), which emerges from
pixel filter discontinuities and can be handled identically to primary bound-
aries (§5.1), these correlated rays are sampled on the pixel boundary.

edge importance sampling is a by-product of ReSTIR sample reuse
and is orthogonal to these methods.

6 RESTIR AND ANTITHETIC SAMPLING
When differentiating pixel reconstruction filters with respect to
object geometries using PSDR [Zhang et al. 2020], Yu et al. [2022]
demonstrated that pixel-level antithetic sampling is crucial for en-
suring fast convergence.

As illustrated in Figure 4, antithetic sampling shoots two or four
camera rays whose image plane intersections exhibit point symme-
try with respect to the pixel center. Additionally, these camera rays
must be correlated so the derivatives of their contributions cancel.

Previously, multi-path correlation was normally handled by forc-
ing paths to use identical pseudo-random sequences by reusing the
random seeds when sampling each path.

Unfortunately, this is insufficient when using ReSTIR. As shown
in Figure 5-a, even with identical random numbers, the nearest
neighbor search at two antithetic shading points 𝒑 (0)1 and 𝒑 (1)1 may
return different reservoirs𝑄 (0) and𝑄 (1) (Line 9, Algorithm 4). This
causes the merged reservoirs returned by SpatiotemporalReuse ()
(Line 10) to become less correlated.
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CameraCamera

Fig. 5. Correlating reservoirs: (a) Independent spatiotemporal reuse at
antithetic shading points 𝒑 and 𝒑∗ may reuse different reservoirs. Here,
𝑄 = {r1, r2} will be used at 𝒑 and 𝑄∗ = {r2, r3} at 𝒑∗. This weakens
antithetic path correlation, reducing antithetic sampling’s effectiveness. (b)
We randomly select one antithetic shading point and force others to use the
same reservoir set. Here 𝒑 is chosen, so both 𝒑 and 𝒑∗ reuse𝑄 = {r1, r2}.
This better correlates antithetic paths, improving sampling efficiency.
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ALGORITHM 7: ReSTIR-based inverse rendering
1 EstimateGradient(I0, resvrin, edgeResvrin)
Input: Target image I0; reservoirs resvrin and edgeResvrin for

spatiotemporal reuse
Output: Gradient d𝜽 L; reservoirs resvrout and edgeResvrout for

later reuse
2 begin

/* Estimate the interior (Alg. 4) */

3 (d𝜽 L)int, 𝜕IL, resvrout ← EstInterior(resvrin ) ;
/* Estimate the primary boundary (Alg. 5) */

4 (d𝜽 L)
pri
bnd ← EstPrimaryBound(𝜕IL, resvrin ) ;

/* Estimate the secondary boundary (Alg. 6) */

5 (d𝜽 L)snd
bnd, edgeResvrout ←

EstSecondaryBound(𝜕IL, edgeResvrin ) ;
/* Compute the full gradient */

6 d𝜽 L ← (d𝜽 L)int + (d𝜽 L)
pri
bnd + (d𝜽 L)

snd
bnd;

7 return d𝜽 L, resvrout, edgeResvrout;
8 end

9 InverseRendering(I0)
Input: Target image I0
Output: Optimized scene parameters 𝜽

10 begin
11 Initialize 𝜽 0;
12 resvr(0) ← {}; edgeResvr(0) ← {};

/* Gradient-based optimization */

13 for 𝑡 = 1, 2, . . . , 𝑁epoch do
/* Estimate the gradient d𝜽 L := dL/d𝜽 */

14 d𝜽 L, resvr(𝑡 ) , edgeResvr(𝑡 ) ←
EstimateGradient(I0, resvr(𝑡−1) , edgeResvr(𝑡−1) ) ;

/* Update the parameters 𝜽 */

15 UpdatedParameters(𝜽 , d𝜽 L) ;
16 end
17 return 𝜽 ;
18 end

As we show in §8, weakened correlation among antithetic paths
increases variance. To address this, we force all antithetic paths to
reuse one reservoir set𝑄 . Precisely, let r(𝑡 ) be a reservoir generated
using streaming RIS (Line 9) for the 𝑡-th correlated path, and

𝑄 (𝑡 ) = PickNeighbors
(
prevReservoirs, r(𝑡 )

)
, (28)

be the corresponding nearest neighbor reservoirs. We randomly
select one set of reservoirs 𝑄∗ ∈ {𝑄 (𝑡 ) : 𝑡 = 0, 1, . . .} for spatio-
temporal reuse (Line 10) across all correlated paths:

r(𝑡 ) ← SpatiotemporalReuse
(
r(𝑡 ) , 𝑄∗

)
, (29)

for all 𝑡 . We illustrate this process in Figure 5-b.
This works for both interior and pixel-boundary paths—which

emerge when the pixel reconstruction filter is discontinuous (e.g.,
box) and behave identically to primary boundaries.

7 RESTIR-BASED INVERSE RENDERING
Leveraging spatiotemporal reuse (Algorithms 4, 5, and 6) from §4 and
§5, we introduce a novel gradient-based inverse rendering pipeline.
As outlined inAlgorithm 7, wemaintain two sets of reservoirs “resvr”
and “edgeResvr” through gradient steps 𝑡 = 1, 2, . . .. We use “resvr”
to estimate interior and primary boundary components (Lines 3–4),
and “edgeResvr” for the secondary boundary component (Line 5).
After each gradient step, we compute the full gradient d𝜽L (Line 6)
and update scene parameters (Line 15) via simple gradient descent
(i.e., 𝜽 ← 𝜽−_𝑡 d𝜽L for step size _𝑡 > 0) or more advanced methods
like Adam [Kingma and Ba 2014].

Burn-in stage. To reduce variance even when starting an inverse-
rendering optimization we add an optional “burn-in” stage. During
this stage, we perform ReSTIR based sampling without backprop-
agating gradients to obtain temporal information for our method.
This makes selecting learning rates easier. In this stage, we repeat-
edly render the initial configuration (without calculating d𝜽L or
applying gradient descent), allowing ReSTIR to establish reservoirs
throughout the scene. We note that, as differentiable evaluation
(which takes most of the time) is not needed during burn-in, itera-
tions are typically much faster than those during optimization.

In practice, we perform about 32 burn-in iterations for our inverse-
rendering experiments.

Supporting multi-view configurations. Thus far, our derivations
assume only one target image I0 and one rendered image I for
inverse-rendering optimizations. In practice, such single-image con-
figurations are insufficient to solve many real-world inverse ren-
dering problems. Instead, multi-view configurations observing the
same scene under multiple viewing conditions are common.

Since these configurations keep scene (and lighting) fixed across
multiple views, light samples stored in reservoirs (i.e., r.𝒚 for each
reservoir r) remain valid. This allows us to use one set of “resvr”
and “edgeResvr” buffers to store reservoirs from all views, largely
reusing our single-image pipeline for multi-view optimizations.
But when mini-batching over camera views (i.e., using random

subsets of views for each gradient step), reservoirs from the prior
step may offer little help if not visible in the current views.

To address this problemwe observe that, at each iteration, regions
of the scene invisible to all randomly selected camera views will
not be updated by gradient-descent because there is generally no
gradient. Based on this observation, after each iteration, we only
replace previous reservoirs visible to at least one randomly selected
view with newly generated reservoirs; we preserve all occluded
reservoirs for the next iteration.
We detail this process in Algorithm 8. For each camera view 𝑘 ,

our method applies the same process (Lines 10–13) to estimate the
gradient as the single-view variant expressed in Algorithm 7. Then,
we preserve all previous reservoirs contained in resvr(𝑡−1) and
edgeResvr(𝑡−1) whose shading points are occluded to all camera
views in the current mini-batch by “forwarding” them to resvr(𝑡 )
and edgeResvr(𝑡 ) (Lines 15–24) for future reuse.
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Fig. 6. Differentiable-rendering comparisons with PT (B.1) and RIS (B.2). Both examples use dynamic scenes (including 250 frames) where the Knot
translates horizontally (top) and the Key rotates around the vertical axis (bottom). The derivatives are computed with respect to the translation for Knot
and rotation angle for Key. The derivative renderings shown are for the last frame. At equal per-frame time, our method (c) produces significantly cleaner
derivative estimates than the baselines (d, e).

Additionally, when solving for object shapes using multi-view
images, combining reservoirs using Algorithm 2 would require stor-
ing multiple additional copies (e.g., one per view) of scene geome-
tries (and corresponding acceleration structures)—which can be
expensive. In practice, for better performance, we introduce a small
amount of bias by checking visibilities (required by Line 9 of Al-
gorithm 2) using only scene geometry from the current iteration.
To minimize the amount of bias introduced, we use small learning
rates for these optimizations.

Computational overhead. Overall, when applied for inverse ren-
dering, our technique introduces the following computational over-
head (compared with streaming RIS): (i) the burn-in stage mentioned
above; (ii) nearest-neighbor searches (e.g., Line 9 of Algorithm 4);
and (iii) combining reservoirs (e.g., Line 10 of Algorithm 4).

In our experiments, using equal sample, the overheads combined
take no more than 20% of the total optimization time. When com-
paring inverse-rendering results, we allow baseline methods to use
higher sample counts so that all methods use approximately identi-
cal total optimization times.

8 RESULTS
Experiment setup. We employ ReSTIR [Bitterli et al. 2020] to the

PSDR [Zhang et al. 2020] formulation to improve the Monte-Carlo

sampling efficiency of PSDR in differentiable and inverse rendering.
To show our technique’s practical use, we compare differentiable-
and inverse-rendering performance against two baseline methods:
B.1 PT: The first baseline is a standard Monte Carlo method gener-

ating one light sample per camera ray. This is widely adopted
by physics-based differentiable renderers including Mitsuba 3
[Jakob et al. 2022] and PSDR [Zhang et al. 2020].

B.2 RIS: Our second baseline uses streaming RIS (Algorithm 1).
This is the most relevant baseline as it outperforms PT (B.1)
for complex lighting and differs from our technique only by
performing no spatiotemporal reuse.

We implement our method and the two baselines using the PSDR
formulation on a GPU-based wavefront differentiable renderer. All
results are generated on a workstation with an AMDRayzen 9 5900X
12-core CPU, 32GB of RAM, and an NVIDIA RTX 3090 GPU.

All our inverse rendering results use unbiased gradient estimates
expect those using multi-view input images to optimize object ge-
ometries (as discussed at the end of §7).

8.1 Evaluation and Ablation
Differentiable-rendering comparisons. We validate our technique

and compare it to the two baselines (B.1 and B.2) via differentiable
rendering in Figure 6.
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ALGORITHM 8: ReSTIR-based inverse rendering with multi-view
target images
1 InverseRendering(I0, I1, . . .)
Input: Multi-view target images I0, I1, . . .
Output: Optimized scene parameters 𝜽

2 begin
3 Initialize 𝜽 0;
4 resvr(0) ← {}; edgeResvr(0) ← {};
5 for 𝑡 = 1, 2, . . . , 𝑁epoch do
6 Select a mini-batch of camera views K ⊆ {0, 1, . . .};

/* Initialization */

7 d𝜽 L ← 0;
8 resvr(𝑡 ) ← {}; edgeResvr(𝑡 ) ← {};
9 foreach camera view 𝑘 ∈ K do

/* Estimate the gradient */

10 (d𝜽 L)𝑘 , resvr′, edgeResvr′ ←
EstimateGradient(I𝑘 , resvr(𝑡−1) , edgeResvr(𝑡−1) ) ;

/* Accumulate the gradient */

11 d𝜽 L += (d𝜽 L)𝑘 ;
/* Store new reservoirs */

12 resvr(𝑡 ) ← resvr(𝑡 ) ∪ resvr′;
13 edgeResvr(𝑡 ) ← edgeResvr(𝑡 ) ∪ edgeResvr′;
14 end

/* Preserve reservoirs not visible to any views

from current the mini-batch K */

15 foreach r ∈ resvr(𝑡−1) do
16 if r.𝒑 is not visible to any camera from K then
17 resvr(𝑡 ) ← resvr(𝑡 ) ∪ {r};
18 end
19 end
20 foreach r ∈ edgeResvr(𝑡−1) do
21 if r.𝒑1 is not visible to any camera from K then
22 edgeResvr(𝑡 ) ← edgeResvr(𝑡 ) ∪ {r};
23 end
24 end

/* Update the parameters 𝜽 */

25 UpdatedParameters(𝜽 , d𝜽 L) ;
26 end
27 return 𝜽 ;
28 end

The first example in this figure uses the “Knot” with translating
geometry, and we compute derivatives with respect to the knot
translation. As illustrated on the top, lighting includes one bright
spotlight and two dim fill lights. The second example shows a ro-
tating “Key” lit by one small and one occluded large area light. We
compute derivatives with respect to the key rotation angle.
For both scenes, the baselines often draw samples from bright

lights that make little contribution, leading to high variance. Our
method reuses valuable samples from prior frames, quickly adapting
to this setting and providing significantly cleaner gradient estimates
that closely match the reference.

Per-component ablation. We recall that, under the PSDR formula-
tion [Zhang et al. 2020], a full derivative generally equals the sum

(a) RIS (b1) Ours (b2) Ours
(int. only) (int. + pri. bound.)

RelMSE: 0.024 RelMSE: 0.018 RelMSE: 0.018

(b3) Ours (b4) Ours (e) Reference(int. + bound.) (int. + bound. + guide)

RelMSE: 0.011 RelMSE: 0.009

Fig. 7. Our technique for individual components: Using the same
“Knot” scene from Figure 6, we demonstrate the effectiveness of our method
on individual components of the derivative by applying it to: (b1) the interior
component only; (b2) the interior and the primary boundary components;
(b3) all components; and (b4) all components with importance sampling
edge points. The derivative images use the same color map as Figure 6.

(a) Ordinary (b) Reference

Pi
g

(c) No antithetic (d) Basic antithetic (e) Ours

RelMSE: 272.84 RelMSE: 6.59 RelMSE: 0.119

Fig. 8. Antithetic sampling:When differentiating with respect to object
geometries using PSDR [Zhang et al. 2020], it is crucial to apply antithetic
sampling at the pixel level [Yu et al. 2022], as shown in (c) and (d). Further,
when ReSTIR is used, our method—which forces all antithetic shading points
to reuse the same set of reservoirs—offers further variance reduction, as
shown in (e). The derivative images use the same color map as Figure 6.

of an interior (§4), a primary boundary (§5.1),4 and a secondary
boundary (§5.2) components.
4We treat the pixel-boundary component discussed in §6 as part of the primary bound-
ary as the two behave mostly identically.
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Table 1. Inverse-rendering configurations and performance statistics. In
this table, “Trg.” indicates the number of target images; “Bat.” is the size of
mini-batches (i.e., the number of images rendered per iteration); “Param.”
denotes the number of scene parameters being optimized; “Iter.” is the
number of iterations; and “DR” indicates the time spent per iteration on
differentiable rendering using our method.

Scene Trg. Bat. Param. Iter. DR

Oxalis (Fig. 1) 1 1 183K 2304 0.45s
Tree (Fig. 10) 1 1 1 1024 0.9s

Painting (Fig. 11) 1 1 153K 2048 0.37s
Kitty (Fig. 12) 32 16 65K 128 14.1s

Octagon (Fig. 13) 17 17 30K 512 12.2s
World map (Fig. 14) 6 2 52K 1024 5.2s

(a) Config. (b) d𝜽 I reference

T
re
e

(c) RIS (d) Ours (Fwd Only) (e) Ours

I

𝜕IL

d𝜽 I

Fig. 9. Forward-only vs. full ReSTIR: This example contains a “Tree” lit
by one small and one occluded large area lights. Using a predefined loss
L(I ) := ∥I − I0 ∥22 with some fixed I0, we compare estimates of gradients
𝜕IL and d𝜽 I—whose product gives the gradient d𝜽 L of the loss L. With-
out applying ReSTIR (c), both estimates are noisy. When applying ReSTIR
only for forward rendering (d), one gets better estimates of I, improving the
gradient 𝜕IL. Applying ReSTIR fully (e) produces low-variance estimates
for both gradients.

To evaluate our technique’s effectiveness across these compo-
nents, we conduct an ablation in Figure 7 using the same Knot

Initial Target Image loss

0 500 1,0000

10

20

30

40
RIS + RIS
Ours + RIS
Ours + Ours

RIS Ours (Fwd Only) Ours

Param. err.: 1.1310Param. err.: 1.1310 Param. err.: 0.4757Param. err.: 0.4757 Param. err.: 0.0007Param. err.: 0.0007

Fig. 10. Forward-only vs. full ReSTIR: Using the same “Tree” scene
as Figure 9, we compare inverse-rendering results where we optimize the
rotation angle of the tree-like object by only looking at its cast shadow. Our
full method (“Ours”) allows the optimization to smoothly converge to the
groundtruth while the other methods fail due to high-variance estimates of
the gradient d𝜽 L.

as Figure 6. Without spatiotemporal reuse, RIS (B.2) suffers from
high variance (see Figure 7-a). Using our method only on the inte-
rior component, derivative estimates on the knot surface become
significantly better (see Figure 7-b1). By also applying our tech-
nique to primary-boundaries, derivatives along the silhouette of
the knots improve (see Figure 7-b2). Also using our method for
secondary-boundaries reduces variance around shadow boundaries
(see Figure 7-b3). Lastly, by importance sampling edge vertices,
further variance reduction can be achieved (see Figure 7-b4).

Antithetic sampling. As discussed in §6, standard antithetic sam-
pling of reconstruction filters, which is crucial to estimate deriva-
tives relative to object geometry, can be insufficient when using
ReSTIR.

We demonstrate this in Figure 8 for a “Pig” scene using a standard
box filter and containing a diffuse pig lit by an area light.We estimate
derivatives with respect to the vertical displacement of the pig. At
equal time, without pixel-level antithetic sampling, the derivative
estimates are extremely noisy (Figure 8-c). The antithetic sampling
proposed by Yu et al. [2022] greatly reduces variance but still suffers
from high variance where gradients are smooth (Figure 8-d). By
forcing antithetic shading points to reuse identical sets of reservoirs,
our method offers estimates with significantly improved quality
(Figure 8-e).

Forward-only vs. full ReSTIR. According to the chain rule in Eq. (11),
the gradient d𝜽L of rendering loss L is the product of 𝜕IL (gradi-
ent of L with respect to forward render I) and d𝜽 I (derivative of
forward render I with respect to scene parameters 𝜽 ).
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Fig. 11. Inverse-rendering comparison using the “Painting” setup modeled after the Veach Ajar scene with an added fill light in the room. We optimize the
painting’s spatially varying albedo (initialized using a gray texture). (c, d) The baseline methods (B.1 and B.2) suffer from extremely high variance, thus failing
to reconstruct the albedo map. (b) Our method, on the other hand, offers the robustness to reconstruct the target albedo map (a) nicely. The albedo error on
the top-right is used for evaluation only.

For inverse rendering, one can apply forward-rendering ReSTIR
only to improve I (and its gradient 𝜕IL) while leaving d𝜽 I han-
dled with methods like RIS (B.2). We compare with this baseline in
Figures 9 and 10 as follows.
Figure 9 shows a “Tree” lit by one small area light and one oc-

cluded large light.We compare forward- and differentiable-rendering
(relative to the tree’s rotation around its vertical axis) of the cast
shadow using three configurations:
• RIS uses RIS for estimating both I and d𝜽 I;

• Ours (Fwd Only) uses ReSTIR for estimating I and RIS for d𝜽 I;

• Ours is our full method, using ReSTIR for I and d𝜽 I.
Further, we use L(I) := ∥I− I0∥22 with some fixed I0 for gradient
𝜕IL (computed via automatic differentiation). As shown in Fig-
ures 9, both “Ours (Fwd Only)” and “Ours” use ReSTIR for forward
rendering, so they enjoy low-variance estimates of I and gradient
𝜕IL.5 But “Ours (Fwd Only)” does not apply ReSTIR for derivative
d𝜽 I, producing much the same noise as the “RIS” baseline. Thus
this approach’s final gradient d𝜽L, given by the chain rule, also

5Another major benefit for having low-variance forward rendering I is to lower the
bias of the gradient 𝜕IL when 𝜕IL is nonlinear with respect to I.

suffers from high variance. We note that, while d𝜽 I is not explicitly
computed for radiative backpropagation methods [Nimier-David
et al. 2020; Vicini et al. 2021], the variance in this term’s estimates
still affect the final gradient d𝜽L.
To further show d𝜽L’s impact, we compare inverse-rendering

performance on the Tree in Figure 10, where we optimize tree rota-
tion angle by only looking at its shadow. We reuse the optimization
setup (e.g., optimizer and learning rates) and adjust light candidate
counts (i.e.,𝑀) so all methods take roughly equal iteration time.

As demonstrated in Figure 10, both “RIS” and “Ours (Fwd Only)”
fail to converge to ground truth due to high variance in the gradient
d𝜽L. Our full method “Ours”, however, allows the optimization to
converge smoothly.

8.2 Inverse-Rendering Comparisons
We now show further inverse-rendering comparisons with our base-
lines (B.1 and B.2). We adjust sample counts so all methods take
roughly equal optimization time (including our burn-in from §7).

Please see Table 1 for performance statistics and the supplemental
material for animated versions of these results.
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Fig. 12. Inverse-rendering comparison using the diffuse “Kitty” under environmental illumination. We optimize the spatially varying albedo (initialized
with a constant texture) of the Kitty. (c, d) The baseline methods (B.1 and B.2) produce high variance on the front of the Kitty, causing over-blurring and color
shifts in the reconstructions. (b) Our method, on the other hand, provides significantly more accurate results.

Texture optimization. We show texture reconstruction in Figures 1,
11, and 12. As there is no differentiation with geometry, we apply
ReSTIR only for forward rendering and the interior component (§4).
Figure 1 contains an “Oxalis” scene with a painting is lit by two

bright spotlights and a dim fill light. Initialized with a constant
gray image, we optimize the spatially varying painting albedo. The
baselines perform okay where directly lit by bright spotlights and
very poorly in darker regions lit only by the fill light. Baseline
reconstruction results severely overestimate albedos inside the spot-
lights and underestimate those outside. With spatiotemporal reuse,
our method performs significantly better than baselines in darker
regions, yielding a far less biased reconstruction.
Figure 11 uses a “Painting” scene modeled after the Veach Ajar

scene, with a new fill light in the room. Initialized with a constant
gray image, we optimize the spatially varying albedo of the painting.
The bright emitter outside the room introduces extreme noise in
both PT (B.1) and RIS (B.2) (row marked “forward”), causing recon-
struction failures. But our method quickly adapts, mainly sampling
the fill light, and nicely reconstructs the target texture (see row
labeled “Texture vis.”).
Figure 12 shows a “Kitty” under environmental illumination. It

is backlit (i.e., most light from behind), causing the baselines to
produce high variance on the front. Our method produces much
cleaner estimates on the front, giving a less biased and more detailed
reconstruction (demonstrated by the bottom row re-renderings).

Shape optimization. Lastly, we show shape reconstruction in Fig-
ures 13 and 14. In both, we use one or multiple images of an object
under complex illumination and optimize object shape (expressed as
triangle meshes). As geometric derivatives are computed, we apply
our method interior (§4) and boundary (§5) components.
Figure 13 uses an “Octagon” lit by 17 spotlights, casting shad-

ows on the walls (shown in “Config.”). Using 17 images of casting
shadows on the walls, we reconstruct the geometry from a sphere.

Figure 14 use a “World Map” where a relief is on a wall lit by
a large area light partially occluded through a window (shown in
“Config.”). Initialized with a flat rectangle, we optimize the relief
shape using six input images (with only one shown).

For both examples, because of the complex lighting, both PT (B.1)
and RIS (B.2) produce noisy forward renderings and gradient esti-
mates. This causes inaccurate reconstructions with visible artifacts
(e.g., along the left map edge). Our method, on the contrary, offers
the robustness to produce clean reconstructions.

9 DISCUSSION AND CONCLUSION
Limitations and future work. Our technique builds on Bitterli

et al.’s [2020] early formulation that supports only direct lighting.
Extending our technique to handle more advanced reuse [Lin et al.
2021, 2022] to support multi-bounce light transport is an important
topic for future research.
Also, when using multiple input images, our technique focuses

only on multi-view configurations observing a static scene under
different viewing conditions. Extending our work to support settings
that allow, for example, illumination conditions and object poses
to change across images would benefit many inverse-rendering
applications.

Lastly, other forms of amortized sampling beyond ReSTIR’s spa-
tiotemporal reuse are worth exploring.

Conclusion. In this paper, we introduced a technique that exploits
temporal consistency in the context of physics-based inverse direct
illumination. Specifically, by adopting the reservoir-based spatiotem-
poral important resampling (ReSTIR) framework, we developed new
Monte Carlo methods to efficiently estimate both interior and bound-
ary components of differential illumination integrals under complex
illumination conditions. Incorporating these ReSTIR-based estima-
tors, we further proposed a new pipeline for physics-based inverse
direct illumination.
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We validated our technique by comparing derivatives estimated
with unbiased baselines and our methods. Additionally, we demon-
strated the effectiveness of our method using several differentiable-
rendering and inverse-rendering experiments.
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Fig. 13. Inverse-rendering comparison using an “Octagon” lit by 17 spotlights, casting several shadows on the walls. We optimize the shape (initialized
as a sphere) by merely looking at shadows on the walls. (c, d) The baseline methods (B.1 and B.2) suffer from high variance, leading to artifacts on the
reconstructed meshes. (b) Thanks to low-variance forward rendering and gradient estimates, our result closely matches ground truth.
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Fig. 14. Inverse-rendering comparison using a “World map” relief lit by a large area light partially occluded by a window. We optimize the shape
(initialized as a rectangle) of the relief. (c, d) The baseline methods (B.1 and B.2) suffer from high variance, giving artifacts on the left edge (c) and less detailed
reconstructions (d). (b) Our method, on the other hand, is capable of producing more accurate and artifact-free results.
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