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Markov-Chain Monte Carlo Sampling of Visibility Boundaries for
Differentiable Rendering
ANONYMOUS AUTHOR(S)
SUBMISSION ID: 551

(a) Ordinary (b) (c) FD References (d) Ours (e) Baseline

Equal-sample Equal-sample

Negative Positive

Fig. 1. We introduce a Markov-Chain-Monte-Carlo (MCMC) differentiable rendering method to sample boundary paths that are crucial for estimating
derivatives with respect to object geometries. This example includes a highly tessellated Nefertiti model (with 1 million vertices) lit by one area lights from
the bottom left corner (a), casting a shadow on the right wall, and observed both directly and indirectly through a mirror. We compute derivatives with respect
to the translation of the Nefertiti model. The highly tessellated mesh and small area emitter make visibility boundary sampling extremely difficult—even
with primary-sample-space guiding. At equal sample and lower render time, our technique (d) produces significantly cleaner derivative estimates than the
state-of-the-art baseline by Zhang et al. [2023] (e).

Physics-based differentiable rendering requires estimating boundary path
integrals emerging from the shift of discontinuities (e.g., visibility bound-
aries). Previously, although the mathematical formulation of boundary path
integrals has been established, efficient and robust estimation of these in-
tegrals has remained challenging. Specifically, state-of-the-art boundary
sampling methods all rely on primary-sample-space guiding precomputed
using sophisticated data structures—whose performance tends to degrade
for finely tessellated geometries.

In this paper, we address this problem by introducing a new Markov-
Chain-Monte-Carlo (MCMC) method. At the core of our technique is a
local perturbation step capable of efficiently exploring highly fragmented
primary sample spaces via specifically designed jumping rules. We compare
the performance of our technique with several state-of-the-art baselines
using synthetic differentiable-rendering and inverse-rendering experiments.

1 INTRODUCTION
Differentiable rendering computes gradients of detector responses
with respect to differential changes of a virtual scene. Being an active
research topic in computer graphics, differentiable rendering is a key
ingredient for integrating the rendering processes into probabilistic
inference and machine learning pipelines, leading to applications
in a wide array of areas including computer vision, computational
imaging, and computational fabrication.

Recently, great progress has been made in physics-based differen-
tiable rendering theory and algorithms [Li et al. 2018; Zhang et al.
2019, 2020; Bangaru et al. 2020; Xu et al. 2023]. These advances have
enabled the capability of differentiating renderings with complex
light-transport effects (e.g., interreflection) with respect to arbitrary
scene parameters including those controlling global object geometry

(e.g., the positions of mesh vertices). Mathematically, it has been
demonstrated that physics-based differentiable rendering generally
amounts to evaluating interior and boundary integrals.

The interior integrals for differentiable rendering share the same
domain as those for forward rendering. Besides repurposing existing
sampling strategies developed for forward rendering, several tech-
niques specialized for differentiable rendering have been introduced
recently. Utilizing new importance sampling strategies [Zeltner et al.
2021], antithetic sampling [Zhang et al. 2021], or spatiotemporal
reuse [Chang et al. 2023; Wang et al. 2023], these techniques have
advanced the efficiency for estimating the interior integrals.

The boundary integrals are unique to differentiable rendering and
emerge from discontinuities (e.g., visibility boundaries) evolving
with the differentiation parameter. Previously, these integrals are
usually estimated in two ways—either directly [Li et al. 2018; Zhang
et al. 2020; Yan et al. 2022] or after being reparameterized into interior
integrals [Loubet et al. 2019; Bangaru et al. 2020; Xu et al. 2023].

Compared with the reparameterization-based methods, the direct
ones have the benefit of being unbiased and, when importance
sampled properly, more efficient. To this end, several guiding-based
methods [Yan et al. 2022; Zhang et al. 2023] that operate under
the primary-sample space have been introduced. Unfortunately,
while although these techniques work adequately for scenes with
relatively simple geometries, their performance tends to degrades
for highly tessellated scenes—which can cause the primary-sample
space to become extremely fragmented, overwhelming accelerate
structures (e.g., octrees) used by the guiding-based methods.
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In this paper, we develop a new technique for sampling of bound-
ary paths. Instead of relying on guiding, our technique leverages
Markov-Chain-Monte-Carlo (MCMC) for efficient exploration of
the primary-sample space.
Concretely, our contributions include:

• Introducing MCMC to physics-based differentiable rendering;

• Devising new local perturbation strategies to enable robust ex-
ploration of highly fragmented primary-sample spaces.

We demonstrate the effectiveness of our technique using several
differentiable and inverse rendering examples (Figures 7–9).

2 RELATED WORKS
Markov chain Monte Carlo (MCMC). MCMC techniques allow

drawing (potentially high-dimensional) samples proportional to ar-
bitrary nonnegative target functions, enabling various statistical in-
ference tasks (e.g., [Brooks et al. 2011]). One of the most well known
MCMC techniques is the Metropolis-Hastings algorithm [Hastings
1970; Metropolis et al. 1953]. The idea is to start from an initial
sample, and mutate the sample using a proposal distribution. The
algorithm then randomly accepts or rejects the sample based on
the target function to create a Markov chain. The sample sequence
forms a distribution that asymptotically converges to the target
distribution.
State-of-the-art techniques for designing proposal distributions

include Hamiltonian Monte Carlo (HMC) [Duane et al. 1987; Neal
et al. 2011; Betancourt 2017] and Langevin Monte Carlo (LMC)
[Roberts and Tweedie 1996]. The key feature of these methods lies
in their use of the gradients of the target function with respect to the
sampling space. This allows them to adapt the proposal distribution
to the shape of the target function, improving sampling efficiency.

MCMC forward rendering. MCMC techniques [Sik and Křivánek
2020] were introduced to physics-based rendering by Veach and
Guibas [1997]. Their algorithm, termed Metropolis Light Trans-
port, operates in path space, generating new path proposals by
directly modifying the vertices of previously sampled paths. Subse-
quent path-space algorithms have introduced proposal strategies
targeting hard-to-sample specular or near-specular paths [Jakob
and Marschner 2012; Kaplanyan et al. 2014; Hanika et al. 2015],
dealing with complex visibility [Otsu et al. 2018], or focusing on
spatial image gradients [Lehtinen et al. 2013].
Alternatively, Kelemen et al. [2002] have proposed to operate

MCMC rendering in the primary-sample space by generating new
proposals of primary samples (i.e., random numbers used to con-
struct light paths via predetermined procedures). Although some-
times less efficient than path-spaceMCMCmethods, primary-sample-
space techniques are significantly simpler to design and analyze.
Using the primary-sample space formulation, HMC and LMC

have been introduced to physics-based rendering by Li et al. [2015]
and Luan et al. [2020], respectively. By using the gradients of the
light path contribution with respect to the sampling space, these
methods enable a general way to adapt the proposal distribution
to sparse and anisotropic target functions. Our technique is built
upon the PSSMLT rendering framework by Kelemen et al. [2002]
but operates over a different space corresponding to boundary light

paths, and we optionally use techniques from LMC [Luan et al. 2020]
to improve the sampling efficiency.

Monte Carlo sampling of boundary paths. The first general method
that samples light paths through boundaries has been introduced by
Li et al. [2018]. This technique requires detecting object silhouettes
with respect to arbitrary shading points and can be prohibitively
expensive for objects with finely detailed geometries.
To address this problem, Zhang et al. [2020] introduced the for-

mulation of differential path integrals—which we also use in this
paper. Being a path-space technique, this formulation allows bound-
ary paths to be sampled using a multi-directional process without
performing explicit silhouette detection.
To further improve the efficiency of the sampling of boundary

paths, Yan et al. [2022] have proposed to utilize hierarchical data
structures to guide the sampling. Recently, Zhang et al. [2023] have
introduced a technique that utilizes a specialized projection process
to guide the sampling process. By leveraging MH-based sampling,
our method outperforms these methods on challenging scenes as
we will demonstrate in §5.

Reparameterizing boundary integrals. Another class of differen-
tiable rendering methods [Loubet et al. 2019; Bangaru et al. 2020;
Vicini et al. 2022; Bangaru et al. 2022; Xu et al. 2023] estimate bound-
ary path integrals after reparameterizing them into interior ones
and, thus, do not require directly sampling boundary paths. On the
other hand, importance sampling of the reparameterized integrals—
which involves hard-to-sample quantities like divergences—remains
challenging. As we will demonstrate in §5, our method can offer
better efficiency at considerably lower computational cost.

3 PRELIMINARIES
Our contribution is to introduce a Langevin-Monte-Carlo-based
sampler for handling discontinuities in differential path integrals.
We provide a brief recap of related techniques and definitions before
discussing our method.

3.1 Differential Path Integral
3.1.1 Path integrals. Introduced by Veach [Veach 1997], the re-
sponse 𝐼 of a radiometric detector can be expressed as a path inte-
gral:

𝐼 =

∫
𝛀

𝑓 (𝒙̄) d𝜇 (𝒙̄), (1)

where 𝛀 :=
⋃∞
𝑁=1 M

𝑁+1 is the path space (withM denoting the
union of all object surfaces) comprising light paths 𝒙̄ := (𝒙0, . . . , 𝒙𝑁 )
with 𝒙0 on a light source and 𝒙𝑁 on the detector, and 𝜇 is the cor-
responding area-product measure. Further, the integrand 𝑓 is the
measurement contribution function given by

𝑓 (𝒙̄) := 𝐿e (𝒙0 �𝒙1)𝑊e (𝒙𝑁−1 �𝒙𝑁 )[
𝑁−1∏
𝑛=1

𝑓s (𝒙𝑛−1 �𝒙𝑛�𝒙𝑛+1)
] [

𝑁∏
𝑛=1

𝐺 (𝒙𝑛−1 ↔ 𝒙𝑛)
]
, (2)

where 𝐿e and𝑊e are the source emission and detector impor-
tance (or response), 𝑓s is the bidirectional scattering distribution
function (BSDF), and 𝐺 is the (visibility-aware) geometric term.
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Material-form reparameterization. When the object surfaces M—
and hence the path space 𝛀—evolve with some parameter 𝜃 ∈ R,
differentiating the path integral of Eq. (1) becomes more compli-
cated. To address this problem, Zhang et al. [Zhang et al. 2020] have
proposed to reparameterize the evolving object surfacesM using
a one-to-one mapping X(·, 𝜃 ) that, for any 𝜃 , transforms a fixed
reference surface B to the evolving M(𝜃 ). Further, to distinguish
points on the reference and the evolving surfaces, we call any 𝒑 ∈ B
amaterial point and 𝒙 ∈ M(𝜃 ) a spatial point.

Let 𝒑̄ = (𝒑0, . . . ,𝒑𝑁 ) be a material light path with each vertex
𝒑𝑛 on the reference surface B. Then, the mapping X(·, 𝜃 ) : B ↦→
M(𝜃 ) induces a change of variable from 𝒑̄ to a (spatial) light path
𝒙̄ = (𝒙0, . . . , 𝒙𝑁 ) with 𝒙𝑛 = X(𝒑𝑛, 𝜃 ) for all 0 ≤ 𝑛 ≤ 𝑁 . Applying
this change of variable to the path integral (1) yields

𝐼 =

∫
𝛀̂

𝑓 (𝒙̄)
𝑁∏
𝑛=0





 d𝐴(𝒙𝑛)
d𝐴(𝒑𝑛)





︸                   ︷︷                   ︸
=: 𝑓 (𝒑̄)

d𝜇 (𝒑̄), (3)

where the domain of integration is thematerial path space 𝛀̂ :=⋃∞
𝑁=1 B

𝑁+1 (which is independent of the parameter 𝜃 ), and the
integrand 𝑓 is called thematerial measurement contribution.

3.1.2 Differential path integrals. [Zhang et al. 2020] have differen-
tiated the material-form path integral of Eq. (3) with respect to the
parameter 𝜃 using Reynolds transport theorem [1903]. The result
can generally be expressed as material-form differential path
integrals:

d𝐼
d𝜃

=

interior∫
𝛀̂

d𝑓 (𝒑̄)
d𝜃

d𝜇 (𝒑̄) +

boundary∫
𝜕𝛀̂

𝑓 (𝒑̄)𝑉 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) . (4)

In this equation, the interior component is over the same material
path space 𝛀̂ as the material path integral of Eq. (3). The boundary
component, on the other hand, captures the shift of discontinuous
boundaries of the material measurement contribution 𝑓 with respect
to the parameter 𝜃 .

Boundary path integral. In this paper, we focus on the estimation
of the boundary component of Eq. (4)—which we explain in more
details below.
The domain of this integral is the material boundary path

space 𝜕𝛀̂. The elements of this space are material boundary
paths 𝒑̄ = (𝒑0,𝒑1, . . . ,𝒑𝑁 ) ∈ 𝛀̂ where exactly one vertex 𝒑𝐾 (for
some 0 ≤ 𝐾 < 𝑁 ) is constrained over the boundary (i.e., jump
discontinuities) of the mutual visibility V(𝒙𝐾 ↔ 𝒙𝐾+1) between
the spatial points 𝒙𝐾 = X(𝒑𝐾 , 𝜃 ) and 𝒙𝐾+1 = X(𝒑𝐾+1, 𝜃 ) when 𝒑𝐾+1
is fixed. We call the spatial line segment 𝒙𝐾 𝒙𝐾+1—which is tangent
to the scene geometry M(𝜃 ) at a single point 𝒙B—a boundary
segment (see Figure 2).
Further, the measure ¤𝜇 associated with the material boundary

path space 𝜕𝛀̂ satisfies that d ¤𝜇 (𝒑̄) = dℓ (𝒑𝐾 )
∏
𝑛≠𝐾 d𝐴(𝒑𝑛), where

ℓ denotes the curve-length measure.

Fig. 2. Boundary path and visibility boundary: (𝒙0, 𝒙1, 𝒙2, 𝒙3 ) is (the
spatial representation of) a boundary path and contains exactly one bound-
ary segment 𝒙1𝒙2 (illustrated in red) such that one endpoint 𝒙1 is con-
strained on the visibility boundary with respect to the other endpoint 𝒙2.
This segment is tangent to the scene geometry M at one other point 𝒙B

(which is not a vertex of this path).

Lastly, 𝑉 (𝒑𝐾 ) is the scalar normal velocity defined as

𝑉 (𝒑𝐾 ) = 𝒏𝜕 (𝒑𝐾 ) ·
d𝒑𝐾
d𝜃

, (5)

where 𝒏𝜕 (𝒑𝐾 ) denotes the unit normal of the aforementioned visi-
bility boundary at 𝒑𝐾—which we assume without loss of generality
to point toward the occluded side (as shown in Figure 2).

3.1.3 Multi-directional sampling of boundary paths. Numerically
estimating the boundary component in Eq. (4) is challenging. To
avoid explicit silhouette detection—which can be prohibitively ex-
pensive for geometrically complex scenes—[Zhang et al. 2020] have
proposed to sample boundary paths in a multi-directional fashion
by first obtaining the boundary segment. Then, a source subpath and
a detector subpath are built from the two endpoints of the boundary
segment, respectively.

To efficiently importance sample the boundary segment, various
guiding methods have been proposed previously [Yan et al. 2022].
Unfortunately, as we will demonstrate in §4, the effectiveness of
these methods can degrade for scenes with complex light transport
effects such as specular reflection.
In §4, we will introduce a Markov-Chain Monte Carlo (MCMC)

method for robust and efficient sampling of boundary paths.

3.2 Markov-Chain-Monte-Carlo Rendering
The basis of our method is Markov-Chain Monte Carlo (MCMC)
introduced to rendering by Veach and Guibas [Veach and Guibas
1997]. Unlike ordinary Monte Carlo methods that use independent
samples, MCMC methods generate Markov chains—sequences of
correlated samples.

Metropolis-Hastings. A commonly used MCMC algorithm is the
Metropolis-Hastings (MH) method. Given a non-negative target
function 𝐹 , this method allows generating a chain of samples {𝒖𝑡 ∈
U : 𝑡 = 1, 2, . . .} distributed asymptotically proportional to 𝐹 .
The MH method works by iteratively proposing new samples

and determining if the proposed samples are accepted. Precisely,
after predetermining a proposal distribution T : U2 ↦→ R≥0, for
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each the sample 𝒖𝑡 in the chain, a new sample 𝒗 is drawn with a
probability proportional to T (𝒖𝑡 � ·). Then, with the probability

𝛼 (𝒗 | 𝒖𝑡 ) := min
(
1,

𝐹 (𝒗) T (𝒖𝑡 �𝒗)
𝐹 (𝒖𝑡 ) T (𝒗�𝒖𝑡 )

)
, (6)

the proposed sample 𝒗 is accepted by having 𝒖𝑡+1 = 𝒗. Otherwise,
the current sample 𝒖𝑡 is preserved by setting 𝒖𝑡+1 = 𝒖𝑡 .

Global mutation and local perturbation. Kelemen et al. [2002] have
demonstrated that, for complex target functions, it is beneficial to
combine two types of proposal distributions to generate samples
efficiently. Specifically, at any 𝒖𝑡 , one can use the proposal distribu-
tion

T (𝒖𝑡 �𝒗) = 𝜋 Tglobal (𝒖𝑡 �𝒗) + (1 − 𝜋) Tlocal (𝒖𝑡 �𝒗), (7)

where:
• Tglobal (𝒖𝑡 �𝒗) is the global mutation proposal that makes large

modifications and helps jumping among distant peaks of the
target function;

• Tlocal (𝒖𝑡 � 𝒗) is the local perturbation proposal that applies
small changes and allows efficient local exploration around 𝒖𝑡 ;

• 𝜋 ∈ (0, 1) is a hyperparameter controlling the probability for the
local kernel to be used.

4 OUR METHOD
The main objective of this paper is to estimate the boundary com-
ponent of the differential path integral of Eq. (4):

𝐼bnd :=
∫
𝜕𝛀̂

𝑓 (𝒑̄)𝑉 (𝒑𝐾 ) d ¤𝜇 (𝒑̄) . (8)

Inwhat follows, we first rewrite this integral as one over the primary-
sample space in §4.1. Then, we discuss how this integral can be
estimated efficiently using Markov-Chain Monte Carlo (MCMC) in
§4.2 and §4.3.

4.1 Primary-Sample-Space Formulation
A material boundary path 𝒑̄ = (𝒑S

𝑠 , . . . ,𝒑
S
0,𝒑

D
0 , . . . ,𝒑

D
𝑡 ), as stated

in §3.1.3, is typically sampled in a multi-directional fashion via the
following two steps.

S.1 Drawing the boundary segment 𝒑S
0𝒑

D
0 by first drawing a spatial

point 𝒙B ∈ M and a unit vector 𝝎B ∈ S2. Then, the spatial
representation 𝒙S

0𝒙
D
0 of the boundary segment𝒑S

0𝒑
D
0 is obtained

using ray tracing via

𝒙S
0 = rayIntersect(𝒙B,−𝝎B), 𝒙D

0 = rayIntersect(𝒙B,𝝎B) . (9)

This step consumes three primary samples (i.e., uniform random
numbers) 𝒖B ∈ [0, 1)3. When the scene geometry is described
using polygonal meshes—which is the case we focus on—one
random number is used to draw 𝒙B (from an edge of a polygonal
face) and two for the direction 𝝎B. In the rest of this paper, we
refer to the point-vector pair (𝒙B,𝝎B) as a boundary ray.

S.2 Building a source subpath (𝒑S
𝑠 , . . . ,𝒑

S
0) from 𝒑S

0 with 𝒑S
𝑠 on

a light source and a detector subpath (𝒑D
0 , . . . ,𝒑

D
𝑡 ) from 𝒑D

0
with 𝒑D

𝑡 on the detector using standard path sampling methods

that consume two sequence of random numbers 𝒖S and 𝒖D for
the two subpaths, respectively. In practice, we use unidirectional
path and particle tracing to construct the source and detector
subpaths. For the former, we rely solely on BSDF sampling—
That is, without next-event estimation (NEE).

This two-step sampling process allows the boundary integral of
Eq. (8) to be rewritten as one over the primary-sample space:

𝐼bnd =

∫
[0,1)3

∫
U2

𝑓 (𝒑̄)𝑉 (𝒑D
0 ) 𝐽𝒖 (𝒖

B, 𝒖S, 𝒖D) d𝒖S d𝒖D d𝒖B, (10)

where U :=
⋃∞
𝑛=0 [0, 1)𝑛 is the space of random-number sequences.

In addition,

𝐽𝒖 (𝒖B, 𝒖S, 𝒖D) :=




 d ¤𝜇 (𝒑̄)

d𝒖S d𝒖D d𝒖B





 , (11)

is the Jacobian term that captures the change of variable from
material bound path 𝒑̄ ∈ 𝜕𝛀̂ to random numbers (𝒖B, 𝒖S, 𝒖D) ∈
[0, 1)3 ×U2 and equals the reciprocal of the probability density for
drawing the material boundary path 𝒑̄ (using the aforementioned
two-step sampling process).

Computational challenges. As observed by prior works [Yan et al.
2022; Zhang et al. 2023], the mapping from the primary sample 𝒖B

to the boundary ray 𝒙B,𝝎B can contain many jump discontinuities,
causing the importance sampling of 𝒖B challenging. This primarily
emerges from the sampling of the point 𝒙B over mesh edges—for
which globally continuous parameterizations are hard to obtain.

To address this problem, prior methods [Yan et al. 2022; Zhang
et al. 2023] rely on hierarchical structures (e.g, kdtrees or octrees)
to guide the sampling. Unfortunately, the performance of these
methods degrades when the hierarchical structures fail to accurately
capture rapid changes caused by the discontinuities—which tends
to occur for highly tessellated scenes (even with techniques like
edge sorting [Yan et al. 2022] applied).

In the following, we propose an efficient sampling algorithm that
does not require complex guiding data structures. Instead, our tech-
nique applies Markov-Chain Monte Carlo (MCMC) with specialized
local perturbation strategies that allow a sample to move across dis-
continuity boundaries in the primary-sample space. Consequently,
our method remains robust and efficient even for highly tessellated
meshes—which we will demonstrate in §5.

4.2 Basic MCMC Sampler
With the primary-sample-space integral of Eq. (10) established, we
apply Markov-Chain Monte Carlo (MCMC) described in §3.2 to
efficiently draw the primary samples 𝒖B ∈ [0, 1)3 and 𝒖S, 𝒖D ∈ U.

Target function. We set the target function as

𝐹 (𝒖B, 𝒖S, 𝒖D) := 𝑓 (𝒑̄) 𝐽𝒖 (𝒖B, 𝒖S, 𝒖D). (12)

We do not include the scalar normal velocity𝑉 (𝒑D
0 ) in this function

because: (i) it can take negative values; (ii) computing it requires
evaluating the derivative d𝒑D

0/d𝜃—which can be expensive to obtain
at render time when using reverse-mode automatic differentiation;
and (iii) when differentiating with respect to multiple parameters—a
common scenario in inverse rendering—the normal velocity 𝑉 (𝒑D

0 )
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Wedge

Fig. 3. Boundary ray sampling: A boundary ray (𝒙B,𝝎B ) is typically
drawn with random numbers (𝑢B

0 ,𝑢
B
1 ,𝑢

B
2 ) ∈ [0, 1)3 in three steps as follows.

(a) 𝑢B
0 is used to randomly select an edge 𝐸 and a point 𝒙B on the edge. (b)

The two planes 𝑃0 and 𝑃1 containing the two faces sharing the selected
edge 𝐸 determines a “wedge”. 𝑢B

1 is then used to sample a plane 𝑃 within
this wedge. (c) Lastly, 𝑢B

2 is used to sample the direction 𝝎B within the
plane 𝑃 .

becomes vector-valued (i.e., one component per parameter), making
it nontrivial to define a scalar-valued target function 𝐹 .

Local perturbation. Our local perturbation is based on the scheme
introduced by Kelemen et al. [2002]. At each state 𝒖𝑡 , a new proposal
is drawn from an isotropic Gaussian distribution centered at 𝒖𝑡 :

Tlocal (𝒖𝑡 �𝒗) = N
(
𝒗; 𝒖𝑡 , 𝜖𝑰

)
, (13)

where 𝜖 ∈ R>0 is the step length of the local perturbation.
Unfortunately, as discussed in §4.1, the target function of Eq. (12)

can be extremely fragmented, causing the proposal 𝒗 obtained using
Eq. (13) to have a high chance of being rejected by the Metropolis-
Hasting step using Eq. (6). To address this problem, we introduce
several specialized operations—which we will discuss in §4.3.

Global mutation. As discussed in §3.2, it is generally beneficial to
use a linear combination of local perturbations and global mutations
for the full proposal distribution. This is also the case for us, due to
the highly discontinuous nature of the target function (12). In theory,
we can use any existing (non-MCMC) sampling methods—including
the previous guiding-based methods [Yan et al. 2022; Zhang et al.
2023]—for global mutations. However, our experiments indicate that
uniformly (re)sampling the primary samples 𝒖B, 𝒖S and 𝒖D works
adequately without introducing computational overhead from the
guiding procedures.

4.3 Improving Local Perturbation
As discussed in §4.2, the vanilla local perturbation in Eq. (13) can
be inadequate—especially when the target function is highly frag-
mented (i.e., contains many disconnected pieces). To address this
problem, we introduce two major improvements to the local pertur-
bation in the following.

4.3.1 Rolling. Before introducing the first improvement, we first
detail how a boundary ray (𝒙B,𝝎B) is drawn using the primary
sample 𝒖B := (𝑢B

0 , 𝑢
B
1 , 𝑢

B
2 ) ∈ [0, 1)3 in Step S.1.

When the scene geometry is expressed with polygonal meshes—
which is the case we focus on in this paper—the spatial point 𝒙B is
drawn from the edges of the mesh using the first component 𝑢B

0 ∈
[0, 1). The sampling process—when implemented by selecting first
an edge and then a point on that edge—bijectively maps each edge 𝐸

to a sub-interval𝑈 (𝐸) ⊆ [0, 1). After drawing 𝒙B from some edge 𝐸,
the direction 𝝎B is then sampled using the last two components
(𝑢B

1 , 𝑢
B
2 ) from a wedge determined by the face(s) associated with the

edge 𝐸. Precisely, as illustrated in Figure 3, the second component𝑢B
1

is used for drawing a tangent plane from the wedge, and the third
component 𝑢B

2 is consumed to select a direction within this plane.
Given this sampling process, it holds that, when restricting the pri-

mary sample 𝒖B inside the axis-aligned boxU(𝐸) := 𝑈 (𝐸) × [0, 1)2

for any edge 𝐸, the mapping from 𝒖B to the boundary ray (𝒙B,𝝎B)
is continuous. On the contrary, when 𝒖B moves across the bound-
ary of a boxU(𝐸), the corresponding boundary ray, if exists, can
change drastically.

Based on this observation, we introduce additional rules to handle
situations when a local perturbation attempts to move across the
boundary of some boxU(𝐸). Precisely, let the current state be 𝒖𝑡 :=
(𝒖B, 𝒖S, 𝒖D) with 𝒖B ∈ U(𝐸) for some edge 𝐸 and 𝒗 := (𝒗B, 𝒗S, 𝒗D)
be a proposal drawn from Eq. (13). When 𝒗B belongs to the same box
U(𝐸), we proceed as normal by applying the Metropolis-Hasting
step in Eq. (6) to the full proposal 𝒗. Otherwise, we call the (primary-
sample-space) intersection between the boundary of the box U(𝐸)
and the line segment connecting 𝒖B and 𝒗B an “event point”, and
attempt to update 𝒗B deterministically based on where the event
point is as follows.

Case 1. When the event point resides on the lower/upper bounds
of the boxU(𝐸)’s first dimension, it holds that the local perturbation
attempts to move 𝒙B off the current edge 𝐸 (see Figure 4-a). In this
case, let𝑈 be the vertex corresponding to the face containing the
event point, we update 𝒗B = (𝒗B

0 , 𝒗
B
1 , 𝒗

B
2 ) ∈ [0, 1)3 of the proposal 𝒗

in three steps as follows:
(1) We select another edge 𝐸′ (uniformly at random) associated

with the vertex𝑈 ;

(2) We “snap” the perturbed point 𝒙B to 𝐸′ and update the primary
sample 𝒗B

0 accordingly;

(3) We recompute (𝒗B
1 , 𝒗

B
2 ) so that the direction 𝝎B remains un-

changed.
To determine the set of valid edges for the first step, we use the

perturbed direction 𝝎B (given by 𝒗B). Specifically, an edge 𝐸′ is
valid only when 𝝎B resides inside the wedge associated with 𝐸′,
which can be determined by testing if

(𝒏1 · 𝝎B) (𝒏2 · 𝝎B) < 0, (14)

where 𝒏1 and 𝒏2 are the (outward) normals of the two faces sharing
the edge. If there is no valid candidate, we simply reject entire
proposal 𝒗 (and set 𝒖𝑡+1 = 𝒖𝑡 ).

Case 2. When the event point lands the bounds of the boxU(𝐸)’s
second dimension, the local perturbation would cause 𝒙B to move
out of the wedge determined by 𝐸 (as illustrated in Figure 3-b). In
this case, we “roll” the boundary ray around a face associated with
𝐸 to obtain a new ray located at some 𝒙B

new on another edge of this
face (see Figure 4-b).

Case 3. The last dimension 𝑣B
2 of the perturbed primary sam-

ple 𝒗B is used to draw the direction 𝝎B of the perturbed boundary
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Fig. 4. Improved local perturbation: When a local perturbation attempts to move a primary sample 𝒖B to a point 𝒗B outside the box U(𝐸 ) illustrated in
blue, we move 𝒖B to a new location 𝒗B

new deterministically based on the following rules. Let 𝒖p be the event point (i.e., the intersection between the boundary
of the box U(𝐸 ) and the segment connecting 𝒖B and 𝒗B). (a) When 𝒖p is located on the bounds of the first dimension of the box, the perturbation would
cause the boundary ray to move off the edge 𝐸. In this case, we compute the boundary ray 𝑅′0 corresponding to the event point 𝒖p and select an adjacent
edge 𝐸′ such that the point 𝒖′

p on the boundary of the box U(𝐸′ ) also produced the ray 𝑅′0. Then, we continue the perturbation (based on the offset from 𝒖p

to 𝑣B) to obtain the point 𝒗B
new. (b) When 𝒖p resides on the bounds of the second dimension, the perturbation would rotate the boundary ray 𝑅0 out of the

wedge associated with the edge 𝐸. In this case, the event point 𝒖p produces a boundary ray 𝑅′0 that resides inside the plane containing a face associated with
𝐸 (the yellow triangle in this example). We compute another boundary ray 𝑅′1 that coincides with 𝑅′0 except for having the position 𝒙B

new (instead of 𝒙B). Then,
we find the primary-space point 𝒖′

p corresponding to 𝑅′1 and continue the perturbation to obtain 𝒗B
new. (c) When 𝒖p is located on the bounds of the third

dimension, the perturbation would rotate the boundary ray 𝑅0 around 𝒙B with an angle beyond the range [0, 2𝜋 ) . In this case, we simply map the point 𝒗B

back into the box (by entering from the opposite face).

ray (𝒙B,𝝎B) within a predetermined plane (see Figure 3-c). Since
the mapping from [0, 1) to directions on a plane is cyclic, we simply
make the point to re-enter the box U(𝐸) from the opposite (see
Figure 4-c).

Additional details. When jumping between boxes based on the
three rules above, when entering a new box and exiting the current
one from the same side (e.g., Figure 4-b), we flip the perturbation
direction (in the primary-sample space) accordingly. Lastly, we allow
a single perturbation to travel across multiple boxes.

Reversibility. It is easy to verify that, based the aforementioned
rules, our local perturbation operation is fully reversible. Therefore,
the mapping from the current state to the proposal state is one-to-
one, which ensures the unbiasedness of our method.

4.3.2 Langevin Monte Carlo. To further improve the local pertur-
bation efficiency, we adopt the Langevin Monte Carlo technique
similar to the work by Luan et al. [2020]. Specifically, we update the
local perturbation in Eq. (13) to:

Tlocal (𝒖𝑡 �𝒗) = N
(
𝒗; 𝒖𝑡 + 1

2
𝜖 ∇𝒖

(
log 𝐹 (𝒖𝑡 )

)
, 𝜖𝑰

)
. (15)

We forego the Adam-based preconditioning introduced by Luan
et al. [2020] since it provides little benefits in our experiments—
presumably due to the highly fragmented nature of our target func-
tion.

After obtaining the proposal 𝒗, we update it using the same rules
discussed in §4.3.

Scaling the step size. To further improve the robustness of our tech-
nique, we apply an non-uniform scaling to the step size. Specifically,
at 𝒖𝑡 = (𝒖B, 𝒖S, 𝒖D) with 𝒖B := (𝑢B

0 , 𝑢
B
1 , 𝑢

B
2 ), we replace 𝜖 ∈ R>0 in

Eq. (15) with a 3 × 3 diagonal matrix:

𝜖
©­«
∥d𝑢B

0/d(𝒙B,𝝎B )∥1
∥d𝑢B

1/d(𝒙B,𝝎B )∥1
∥d𝑢B

2/d(𝒙B,𝝎B )∥1

ª®¬ , (16)

where d𝑢B
𝑖/d(𝒙B,𝝎B ) is obtained by differentiating the inverse of the

mapping from 𝒖B to the boundary ray (𝒙B,𝝎B). This operation
essentially re-scales the primary-sample-space mutation so that
changes become more even in the path space.

4.4 Full MCMC Estimator
We now present our full MCMC estimator—which involves two
main stages—for the boundary integral in Eq. (8).
In the first stage, we estimate the normalization factor 𝑐 of the

target function 𝐹 defined as

𝑐 :=
∫
[0,1)3

∫
U2

𝐹 (𝒖B, 𝒖S, 𝒖D) d𝒖S d𝒖D d𝒖B =

∫
𝜕𝛀̂

𝑓 (𝒑̄) d ¤𝜇 (𝒑̄),

(17)
independently using ordinary Monte Carlo methods (e.g., [Yan et al.
2022; Zhang et al. 2023]). This factor gives the full probability density
for our MH-based sampler described in §4.2 and §4.3:

pdf (𝒖B, 𝒖S, 𝒖D) = 𝐹 (𝒖B, 𝒖S, 𝒖D)/𝑐. (18)

As we estimate the normalization factor 𝑐 , we store the path samples
and their corresponding contributions as “seeds”. For more efficient
path seeding, similar to the method proposed by Bitterli and Jarosz
[2019], we sample an additional set of paths where the source sub-
paths are constructed using next-event estimation (NEE). These
paths are then mapped backed onto the primary-sample space.
In the second stage, we re-sample a subset of 𝑛chains seed paths

(using resampled importance sampling [Talbot et al. 2005]), each
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of which then serves as the initial state that is expanded into a full
Markov chain using our MCMC sampler described in §4.2 and §4.3.
Let

{
(𝒖B
𝑖
, 𝒖S
𝑖
, 𝒖D
𝑖
) : 𝑖 = 1, 2, . . . , 𝑁

}
be all the samples generated

by these Markov chains. Our full estimator of the boundary integral
then takes the form

⟨𝐼bnd⟩MCMC =
1
𝑁

𝑁∑︁
𝑖=1

𝐹 (𝒖B
𝑖
, 𝒖S
𝑖
, 𝒖D
𝑖
)𝑉 (𝒑D

0,𝑖 )
pdf (𝒖B

𝑖
, 𝒖S
𝑖
, 𝒖D
𝑖
)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑐 𝑉 (𝒑D
0,𝑖 ),

(19)
where 𝒑D

0,𝑖 is an endpoint of the boundary segment generated using
primary samples 𝒖B

𝑖
.

In practice, given the definition of the scalar normal velocity𝑉 in
Eq. (5), our full estimator in Eq. (19) can be evaluated by applying
automatic differentiation to

1
𝑁

𝑁∑︁
𝑖=1

detach
(
𝑐 𝒏𝜕

(
𝒑D

0,𝑖

))
· 𝒑D

0,𝑖 , (20)

where 𝒏𝜕 (𝒑D
0,𝑖 ) denotes the unit normal of the visibility boundary

curve at 𝒑D
0,𝑖 (pointing toward the occluded side).

5 RESULTS
We implement our MCMC-based estimator described in §4 on the
CPU-based system by Xu et al. [2023] that uses the Enzyme auto-
matic differentiation framework [Moses and Churavy 2020]. Our
MCMC estimator does not requi

Baselines. We compare our technique to two state-of-the-art base-
lines: primary-sample-space projective sampling by Zhang et al.
[2023] (indicated as “PSDR_proj”), and path-space warped-area sam-
pling by Xu et al. [2023] (denoted as “PSDR_was”).

Ablations. We evaluate the effectiveness of our rolling scheme
(§4.3) in Figure 5 using a scene containing an object lit by a large
area light viewed through a mirror. The differentiable rendering
results are with respect to the vertical displacement of the object
(visualized using the same colormap as Figure 1). The inverse ren-
dering results—where the shape of the object is optimized—use the
same number 𝑛chains of chains and varying sample counts for all
configurations to conduct equal-time comparisons.

Additionally, we evaluate how correlation affects inverse render-
ing performance in Figure 6, which uses a scene containing an object
inside a glass box. Using 50 multi-view images, we optimize the
shape of object (initialized as a sphere). In this experiment, we keep
the MCMC step length 𝜖 and total sample counts fixed, and gradu-
ally increase the number 𝑛chains of chains. By examining mesh error
after 200, 400, and 600 iterations (see Figure 6-c), we observe that
using 500–1000 chains provides the best overall efficiency—which
we find to be the case for all of our inverse-rendering experiments.

Inverse-rendering comparisons. To further demonstrate the effec-
tiveness of our technique, we show differentiable and inverse ren-
dering results in Figures 7–9. For all experiments, our method use
500–1000 chains with around one million samples in total. We man-
ually tweak the step size 𝜖 in Eq. (15) so that the acceptance rate
is between 0.1 and 0.6. One can also use adaptive MCMC [Andrieu
and Thoms 2008] to tune the step size, but we leave this feature out

Table 1. We show the configuration and performance data for our inverse
rendering experiments. “# of vert.” measures how many vertices are used for
the optimization. “spp” shows the average sample per pixel used to evaluate
the boundary term during training. The last three columns show the time
taken (in seconds) for each algorithm to evaluate the boundary term.

Scene # of vert. spp Ours PSDR_proj PSDR_was
Bunny 40,000 13 2.15 1.95 5.54
Dodoco 100,000 23 1.08 3.30 8.38
Lucy 50,000 9 1.05 2.89 5.40

for simplicity. We also skip burn-in and thinning as they have little
effect in our experiments.

To compare with PSDR_was and PSDR_proj, we use equal-sample
configurations because PSDR_proj uses a different system (i.e., Mit-
suba 3’s CPU backend) from PSDR_was and our implementation.
At equal sample, our technique normally runs faster than the two
baselines. Please see Table 1 for detailed performance data.
Since all three techniques estimate only the boundary integral

of Eq. (4), we use the same method for the interior component and
configure the scenes so that the gradients are dominated by the
boundary term.

Figure 7 shows a Lucy scene with a glossy object, twomirrors, and
a large area light. We optimize the shape of the object using a single
target image. Figure 8 contains the Bunny scene where an dark
object is encapsulated within a glass container (with low surface
roughness). Figure 9 shows theDodoco scene where a diffuse object
is viewed from a mirror.

All three examples use moderate to high tessellations, and specu-
lar light transport is crucial for accurate reconstructions. As demon-
strated by the derivative images shown at the top of each figure,
our technique produces clean gradients in equal sample, leading to
better shape reconstructions.

6 DISCUSSION AND CONCLUSION
Limitations and future work. Our technique only estimates bound-

ary path integrals. LeveragingMarkov-Chain-Monte-Carlo (MCMC)
and/or Langevin-Monte-Carlo (LMC) to efficiently estimate interior
path integrals in differentiable rendering is a topic worth investi-
gating. Also, although we have taken a first step analyzing how
correlation affects inverse rendering, more in-depth explorations
are still needed.

Conclusion. In this paper, we introduced a new Markov-Chain-
Monte-Carlo (MCMC) method—which operates in the primary-
sample space—to efficiently sample boundary light paths. At the
core of our technique is a specialized local perturbation scheme that
allows efficient MCMC sampling of extremely fragmented target
functions. We evaluated the effectiveness of our technique by com-
paring with state-of-the-art baselines [Zhang et al. 2023; Xu et al.
2023] using several synthetic differentiable and inverse rendering
examples.
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Fig. 7. We compare differentiable and inverse rendering results generated using PSDR_proj, PSDR_was, and our technique.
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