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Figure 1: The new Sponza scene by Crytek with 12 procedural textile models substituted for the fabrics. These models together represent 33
thousand yarns, composed of 8 million procedurally described fibers. Insets on the right show zoomed versions of two subregions (indicated
with white rectangles), demonstrating the level of fidelity and detail offered by these models. When fully realized, all the cloth models
would take 867 GB of storage, and are practically unrenderable. We introduce a realization-minimizing technique to render such large-scale
procedural textiles on a single computer.

Abstract
Procedural textile models are compact, easy to edit, and can achieve state-of-the-art realism with fiber-level details. However,
these complex models generally need to be fully instantiated (aka. realized) into 3D volumes or fiber meshes and stored
in memory, We introduce a novel realization-minimizing technique that enables physically based rendering of procedural
textiles, without the need of full model realizations. The key ingredients of our technique are new data structures and search
algorithms that look up regular and flyaway fibers on the fly, efficiently and consistently. Our technique works with compact
fiber-level procedural yarn models in their exact form with no approximation imposed. In practice, our method can render very
large models that are practically unrenderable using existing methods, while using considerably less memory (60–200× less)
and achieving good performance.

CCS Concepts
•Computing methodologies → Rendering;

1. Introduction

Fabrics and textiles are critical to our daily lives for their beauty and
utility, and are ubiquitous in clothing and apparel, fashion, home
decor and furnishings. Virtually simulating the rich variety of fabric
appearance across different designs and material types is very chal-

lenging because textiles exhibit diverse visual cues ranging from
anisotropic highlights to fuzzy silhouettes; many of these cues can-
not be fully described with simple surface-based representations.

Recently, a family of micro-appearance models [ZJMB11,
ZJMB12, KSZ∗15] have been developed that explicitly consider a
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fabric’s properties at the fiber-level to achieve state-of-the-art qual-
ity in simulated fabric appearance. These small-scale features have
been demonstrated to be crucial for realistic renderings at closeup
views and, more importantly, to significantly affect a textile’s over-
all appearance (see Figure 2 and [ZLB16]).

These micro-appearance models are generally data-driven and
based on measured micro-geometries described as either high-
resolution 3D volumes [ZJMB11], or large collections of individ-
ual fiber curves [KSZ∗15]. These data-intensive approaches are un-
wieldy to manipulate, and cannot be scaled to full-size models of
fabrics and textiles, as shown in Figures 1, 12, and 13. To address
these problems, procedural models have been introduced to fabrics
by Schröder et al. [SZK15] and refined by Zhao et al. [ZLB16].
These models represent fabric micro-geometry procedurally, via
specifically tailored probability distributions, and enjoy high fi-
delity, compact representation, and easy editability.

However, one major problem remains: the procedural models
still need to be fully realized before being rendered using physi-
cally based methods. In other words, to render these models, they
have to be converted back to expensive data-driven formats as either
high-resolution volume-based representations or detailed polygo-
nal meshes representing large collections of cloth fibers. This need
of full realization fundamentally limits the practical use of proce-
dural models since it not only neglects the benefits offered by being
procedural, but also causes large textiles (e.g., those with thousands
of yarns, and correspondingly millions of fibers) practically unren-
derable due to the excessive amount of data required. Figure 1, for
instance, displays a large scene with 12 procedural textiles com-
posed of 33 thousand yarns and over 8 million fibers. A full real-
ization of all these textiles would take 867 GB of storage, making
this scene unrenderable for existing methods.

Mathematically, the micro-geometry of a procedural textile is
fully determined by the underlying model parameters. So, in prin-
ciple, all properties (e.g., local material density and albedo) needed
for physically based rendering of a procedurally described textile
can be computed on the fly. Unfortunately, because of the complex
relationship between the procedural model parameters and the ren-
dering properties, it is challenging to compute these properties on
the fly.

In this paper, we introduce a novel realization-minimizing tech-
nique for physically based rendering of large-scale procedural tex-
tiles. Precisely, our method provides a volumetric representation
allowing the material properties (e.g., optical density) to be queried
at render time with only a small fraction of the full model real-
ized. These volumes can then be rendered using standard Monte
Carlo solutions (e.g., volume path tracing) to the anisotropic radia-
tive transfer problem [JAM∗10a].

Technically, our contributions include:

• A novel realization-minimizing framework enabling physically
based rendering of large-scale procedural textiles. Our frame-
work retains the full generality of the procedural model by work-
ing with its state-of-the-art form exactly, and imposes no approx-
imations;
• New data structures and volumetric search algorithms connect-

ing the procedural model parameters and material optical prop-
erties in an efficient and consistent way.

We demonstrate the practical impact of this approach using a va-
riety of virtual textiles, from wovens (Figures 1 and 12) to knits
(Figure 13), at widely different scales. The level of fidelity and
detail offered by our technique not only creates realistic zoomed
renderings, but also enables predictive reproduction of fabric ap-
pearance based on their fundamental (fiber-level) properties. Such
predictive rendering is critical for design and virtual prototyping
applications.

2. Related Work

Cloth appearance: Modeling and reproducing cloth appearance
has been an active research topic in computer graphics for decades.
Many surface reflectance models, which treat fabrics as infinitely
thin 2D sheets, have been proposed (e.g., [IM12, SBDDJ13]). Al-
though these models provide high-quality renderings for fabrics
viewed from the far field, they lack the power to closely reproduce
the appearance of fabrics at the near field, which is important for
applications in design and virtual reality.

Micro-appearance cloth models: Micro-appearance mod-
els [ZJMB11, KSZ∗15, SZK15, ZLB16] produce superior quality
for virtual fabrics by explicitly capturing the geometric and optical
properties of a fabric down to the fiber level. The first micro-
appearance cloth model was introduced by Zhao et al. [ZJMB11]
as a special medium in which volumetric scattering of light is
given by the micro-flake model [JAM∗10a]. Later, improvements
to the micro-flake model were developed [KSZ∗15, HDCD15].
Other than volumetric representations, fiber meshes coupled
with specialized light scattering models such as bidirectional
curve scattering distribution functions (BCSDFs) have been
demonstrated to be equally effective in reproducing fabric
appearance [SZK15, KSZ∗15].

Early micro-appearance cloth models were highly data-
intensive, requiring many giga-bytes of data to describe a coin-
sized sample, making these models very expensive to store. To ad-
dress this problem, structure-aware synthesis [ZJMB12] has been
developed. This technique builds large models by replicating a
small set of example blocks, and the synthesized models can be
efficiently rendered using modular flux transfer [ZHRB13]. How-
ever, this technique requires the final model to have a regular 2D
tiling grid, which is the case for woven fabrics but not for many
others such as knitted textiles. Further, the synthesis process uses
randomized tiling which can lead to noticeable repeated patterns.
Please refer to §6.1 for more details.

Procedural textiles: Procedural models [SZK15, ZLB16] have re-
cently been introduced to graphics. These models offer superior
model compactness and editability by leveraging specialized prob-
ability distributions to describe the arrangement of fibers within a
fabric (see §3.2 for details). Unfortunately, as previous work on
procedural cloth modeling has mainly focused on the core model
descriptions, how these models can be rendered in practice without
full model realization has remained largely ignored.

Recently, Wu and Yuksel [WY17] introduced a real-time GPU-
based technique to visualize procedural textiles. They approximate
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(a) (b) (c) (d)

Figure 2: Textile structure hierarchy and its effect on fabric
appearance: A textile (a) is formed by hundreds to thousands of
yarns (b). Each yarn (c), in turn, is composed of tens to hundreds
of micro-diameter fibers (d). The small-scale structures (c, d) of a
fabric can greatly impact its overall appearance. While the top and
bottom fabrics have identical weave patterns and warp/weft col-
ors, since the warp yarns in both textiles have different sizes and
fuzziness, the two models have very different overall appearance.

the procedural model to generate fiber-level geometries at runtime
on the GPU, and visualize the resulting model using rasterization.
This technique is great for interactively visualizing procedural tex-
tiles but has approximations (e.g., baked-in shadows, missing sub-
surface scattering, limitations on the number of fibers) that impact
quality for applications like textile design and virtual prototyping.
In contrast, we see our work as the complete solution that these
applications will build on for high-fidelity rendering. On the other
hand, some technical components of their work such as the core-
fiber approximation may be adopted for physically based render-
ing. Please refer to §6.1 for a detailed discussion.

Procedural granular media: The methods proposed for mod-
eling and rendering granular materials (e.g., sand, snow, and
sugar) [MPH∗15, MPG∗16] involve procedurally generating volu-
metric representations of grains. However, this technique cannot be
applied to our problem as the procedural model for granular media
is very different from that for textiles.

3. Terminology and Background

3.1. Hierarchy of Textile Structures

The structure of a textile is complex at many scales (see Figure 2,
left to right). A full textile is composed of thousands of threads, or
yarns (Figure 2-b), via manufacturing techniques such as weaving
and knitting. Each yarn (Figure 2-c) in turn is created by “spinning”
or twisting together tens to hundreds of micron-radius filaments, or
fibers (Figure 2-d). Many real-world yarns contain multiple sub-
strands, or piles, each of which consists of fibers twisted around a
common center. Previous research has demonstrated that the shape
and arrangement of yarns and fibers greatly affect textile appear-
ance [ZJMB11, IM12, SBDDJ13, SZK15, KSZ∗15] (see Figure 2,
top vs. bottom row, for an example).

3.2. Procedural Textiles

Given the hierarchy of textile structures, we now describe their
mathematical representations. At the finest level, the constituent
fibers in a yarn are specified procedurally using previously devel-
oped models [SZK15, ZLB16]. Then, individual yarns are com-
bined to form full textiles.

Procedural yarn modeling: To procedurally specify the fiber
distribution within a single yarn, the following model has
been proposed in textile research and adapted to graphics by
Schröder et al. [SZK15] and refined by Zhao et al. [ZLB16]. As-
suming the yarn center to be the Z-axis, each fiber j is then modeled
as a circular helix hreg

j parameterized by z:1

h
reg
j (z) :=

[
R j cos

(
θ j +

2πz
a

)
, R j sin

(
θ j +

2πz
a

)
, z
]
, (1)

where R j and a respectively control the radius and pitch of hreg
j . To

better capture the migration of fibers exhibited by real-world yarns,
R j in Eq. (1) is further allowed to vary in a sinusoidal pattern via

R j(z) = rminR j +
rmax−rmin

2 R j

[
cos
(

s 2πz
a +θ

(0)
j

)
+1
]
, (2)

where rmin, rmax are two scaling factors that determine the range of
R j(z), s specifies the period of one cycle, and θ

(0)
j gives the phase

of the variation. In Eq. (1) and (2), a, rmin, rmax, and s are shared
by all fibers in a yarn while θ j, θ

(0)
j , and R j are per-fiber properties.

In practice, θ j, θ
(0)
j are sampled uniformly and R j is drawn from a

cross-sectional fiber distribution with parameters ε, β ∈ R+ using
rejection sampling upon the (unnormalized) probability density:

p(R) := (1−2ε)

(
e− eR

e−1

)β

+ ε. (3)

Fibers captured by Eq. (1), (2), and (3) are considered regular
as they closely follow the yarn center. In reality, however, irregu-
larities exist: some fibers may deviate from the main stream and
leave open endpoints or loops beyond the main textile surface. De-
spite being small in number, these flyaway fibers are visually signif-
icant as they are the main cause for a fabric’s fuzzy appearance. In
this paper, we follow the model introduced by Zhao et al. [ZLB16]
which describes flyaway fibers in two categories: hair and loop.
In particular, given z j,1,z j,2 ∈ [0,h] and R j,1,R j,2,θ j,1,θ j,2 ∈ R,
each hair-type flyaway fiber j is treated as an arc parameterized by
z ∈ [z j,1, z j,2]:

hhair
j (z) = [Rhair

j (z)cosθ
hair
j (z), Rhair

j (z)sinθ
hair
j (z), z], (4)

where Rhair
j and θ

hair
j are linearly interpolated in R j,1,R j,2 and

θ j,1,θ j,2, respectively (see Figure 3-a). The loop-type flyaways,
on the other hand, are created by mutating existing regular fibers.
When creating one loop-type fiber, one migration cycle (z↓,z↑) is

1 Eq. (1) and (2) assume all fibers in a yarn are twisted around one common
center, the Z-axis. In reality, many yarns consist of multiple sub-strands,
or plies, such that the fibers reside around individual ply centers (which
are then twisted around the yarn center). For better readability, we assume
all yarns to be single-ply in §3 and most of §4. §4.5 describes how we
generalize to handle multi-ply yarns.
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Figure 3: Flyaway fiber models: (a) Hair-type flyaways are de-
scribed as arcs with endpoints specified in z, R, and θ. (b) Loop-
type flyaways are obtained by mutating entire migration cycles
(marked in orange) of regular fibers; (c) Rendering of a single yarn
with both types of flyaways.
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Figure 4: Yarn space and fabric space: in the yarn space (a), all
constituent fibers are assumed to follow one common center: the Z
axis. In the fabric space (b), arbitrary smooth curve α, parameter-
ized by arc length, is used to specify the yarn center. Transforma-
tion f : R3→ R3 maps locations from the yarn space to the fabric
space. In particular, it maps yarn-space cross section Ayarn(z) to
the fabric-space one Afabric(z).

selected from a randomly chosen regular fiber j such that z↑−z↓ =
a/s and R j(z↓) = R j(z↑) = rminR j. The corresponding fiber seg-
ment {hreg

j (z) | z ∈ [z↓,z↑]} then has its radius R j(z) scaled up uni-

formly to reach some randomly drawn radius Rloop
max at its maximum,

creating a visible loop (see Figure 3-b).

Yarn space and fabric space: To compose multiple procedurally
described yarns into full textiles, we need to deform them to follow
arbitrary center curves instead of the Z-axis. Formally, we seek a
transformation f : R3→ R3 per yarn that converts yarn-space co-
ordinates centered around the Z-axis to fabric-space ones following
an arbitrary smooth curve (Figure 4).

Given a curve α parameterized by arc length, f maps each cross
section in yarn space to the corresponding one in fabric space. Pre-
cisely, assume without loss of generality that the yarn-space center
curve has endpoints [0,0,0] and [0,0,h] for some h > 0. Then, f

should transform any yarn-space cross section

Ayarn(z) := {(x,y,z) | x,y ∈ R}, (5)

for some z0 ∈ [0,h] to the corresponding one in fabric-space, given
by:

Afabric(z) := {r ∈ R3 | 〈t(z), r−α(z)〉= 0}, (6)

where 〈·, ·〉 is the inner product operator, and t(z) := ( d
dtα)(z) de-

notes the tangent direction of α at z. This can be achieved by set-
ting:

f ([x,y,z]) = xn(z)+ yb(z)+α(z), (7)

where n(z) denotes the normal direction at α(z) and b := t×n.
It is easy to verify that Eq. (7) maps the yarn-space center curve
{(0,0,z) | z ∈ [0,h]} to the fabric-space one α.

3.3. Micro-Appearance Textile Models

Two types of micro-appearance models can be used to render
textiles with procedurally described fiber-level details. Volumet-
ric models [ZJMB11, ZJMB12] treat textiles as anisotropic par-
ticipating media [JAM∗10a, HDCD15] which can be rendered us-
ing the radiative transfer framework [Cha60]. Alternatively, fiber-
based representations [KSZ∗15, SZK15, ZLB16] rely on Bidirec-
tional Curve Scattering Distribution Functions (BCSDFs) attached
to individual fibers which then can be rendered using standard ray
tracing.

Khungurn et al. [KSZ∗15] compared these approaches and
demonstrated that both the volumetric and the fiber-based models
offer similar levels of quality. In this paper, we use the volumet-
ric representation to render procedural textiles because (i) without
highly detailed fiber surfaces, these models render faster; and (ii)
the rendering process only requires accessing material properties
locally, which is desirable for developing solutions with minimal
model realization.

The volumetric formulation requires several parameters that
must be specified at each 3D location inside a fabric’s bounding
volume: the extinction coefficient σt , single-scattering albedo α,
and the phase function fp. In the context of cloth rendering, these
parameters are generally derived from the local density, tangent di-
rection, and the cloth fibers’ optical properties (see Appendix A for
more details).

4. Realization-Minimizing Model Lookups

We now present the key ingredient of our technique: accessing pro-
cedurally described textiles without fully realizing fiber geometry.
At each location p ∈ R3 in fabric space, our textile model pro-
vides local material density den(p)∈R+ and direction information
dir(p) ∈ S2, which in turn determine the radiative transfer parame-
ters needed for rendering (§3.3).

dir(p)

rfiber

Fiber
curve

p

q

In principle, den(p) and dir(p) can be
determined based on the fabric-space lo-
cations of individual fibers (see the adja-
cent figure). Given p, if there exists a fiber
curve such that the minimal distance from

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Luan et al. / Fiber-Level On-the-Fly Procedural Textiles

Algorithm 1 Outline of our approach.
Input: Yarn curvesα1,α2, . . .; per-yarn procedural model param-

eters and fiber scattering profiles
Output: Whether a query point p is inside a fiber; data block b that

contains volume density, albedo and orientation information
1: function LOOKUP(p,b)
2: I← LOOKUPYARN(p) . §4.2
3: for all i ∈ I do
4: pyarn← TRANSFORM(i,p) . §4.2
5: if LOOKUPREGULAR(i,pyarn,b) then
6: return true
7: end if . §4.3
8: if LOOKUPFLYAWAY(i,pyarn,b) then
9: return true

10: end if . §4.4
11: end for
12: return false
13: end function

p to this curve is below the fiber’s radius,
then den(p) equals the density of this fiber; otherwise, den(p) = 0.
When den(p)> 0, we further compute the projection q of p on the
fiber curve and set dir(p) to the tangent direction at q. In this way,
computing material density and direction at any given location p
boils down to searching for a fiber curve lying close enough to this
point and finding its projection q on that curve (if there exists one),
as outlined in Algorithm 1.

We introduce a novel solution to this problem without creat-
ing complete model realizations. Our objective is to render large-
scale procedural textile models exactly (i.e., not approximating the
model itself) while minimizing the amount of data needed to be re-
alized and preserving, as much as possible, rendering performance.

4.1. Input

The input to our technique includes a set of n yarn curves
α1,α2, . . . ,αn and per-yarn parameters for (i) the procedural fiber
geometry used by Eq. (1), (2), (3), and (4); and (ii) the material’s
optical properties including density and single-scattering albedo
(see Appendix A for more details).

Notice that, although the input contains explicitly stored yarn
curves, the amount of data involved is negligible compared to a
fully realized model. This is because for each yarn, the input con-
tains only a single curve while the fully realized version would
involve hundreds of fiber curves. Allowing explicitly described
yarn centers also enjoys high flexibility. For instance, we can di-
rectly take yarn-based simulation results [KJM08,CLMMO14] and
add procedural fiber-level details to these models to produce high-
quality renderings (see Figure 13).

4.2. Yarn Lookups

To determine the local fiber density and direction at a given fabric-
space point p, we first need to determine the yarn to which this
point belongs (if any) so that further checks based on the procedural
model depicted in §3.2 can be performed (Line 2 of Algorithm 1).

Identifying relevant yarns: Since each yarn in the fabric space oc-
cupies a pipe-shaped volume determined by the yarn’s center curve
and radius (Figure 4-b), a yarn contains p if and only if the minimal
distance from this point to the yarn’s center falls below its radius.
To efficiently identify all such yarns, we leverage a point Kd-tree
containing the vertices of all yarn curves. We postpone detailed de-
scriptions of this step to §5.2.

Fabric-to-yarn-space transformation: For each yarn i containing
p, we need to check if this point is indeed covered by a constituent
fiber. Since all fibers are described procedurally in yarn space via
Eq. (1), (2), and (3) for regular ones as well as Eq. (4) for fly-
aways, it is desirable to perform the check in this same space. We,
therefore, transform p back to the corresponding yarn space loca-
tion pyarn (Line 4 of Algorithm 1) by inverting the transformation
specified by Eq. (7). Namely,

pyarn = f−1
i (p), (8)

where the subscript i emphasize that f varies across different yarns.
Let pyarn = [x,y,z], Eq. (7) then gives

x ni(z)+ y bi(z) = p−αi(z),

where αi denotes the center curve of yarn i, and ni, bi are respec-
tively the normal and bitangent directions along αi. Here we as-
sume ti, ni, and bi are all given with αi. In practice, we compute
these directions using αi. Please refer to §5.1 for more details.

Since ni(z) and bi(z) are orthogonal to each other, it holds that

x = 〈p−αi(z), ni(z)〉, y = 〈p−αi(z), bi(z)〉, (9)

and evaluating Eq. (8) boils down to finding a proper z.

Let q be the projection of p on αi, then p and q belong
to the same fabric-space cross section. Since f maps yarn-space
cross sections (Eq. (5)) to the corresponding ones in fabric space
(Eq. (6)), pyarn and qyarn should come from the same yarn-space
cross section and share identical z coordinates. In practice, q is ob-
tained when computing the minimal distance between p and the
yarn center (see §5). After finding q =αi(z), pyarn can be obtained
using Eq. (9) as

pyarn = [〈p−αi(z),ni(z)〉, 〈p−αi(z),bi(z)〉, z].

With pyarn determined, we then check if it is covered by a regu-
lar (§4.3) or a flyaway fiber (§4.4) based on the procedural model
described in §3.2.

4.3. Regular Fiber Lookups

Regular fibers form the main body of a yarn, and properly cap-
turing their structure is crucial for reproducing a textile’s overall
appearance, from specular highlights to textures (Figure 5 shows
how critical fiber-level details are for visual realism.).

Thus, our goal is to develop a realization-minimizing technique
to look up regular fibers. This is not too difficult if there is no fiber
migration (i.e., R j in Eq. (1) remains constant), but it is challenging
with migration which adds important visual irregularity. We now
discuss how we address this problem.

The procedural model describes regular fibers as helices using
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Eq. (1). Since hreg
j is parameterized with z, we determine whether

a given yarn-space location pyarn = [x,y,z] is covered by a regular
fiber in the cross sections Ayarn under the same parameterization.
Let ĥreg

j (z) denote the cross-sectional location of fiber j, which
equals the sub-vector of hreg

j (z) involving its X and Y components.
Then, pyarn is covered by a regular fiber j if and only if [x,y] and
ĥ

reg
j (z) lie close enough (see Figure 6-(a)). We now introduce an

efficient approach to determine the existence of such j.

Without fiber migration: We first consider the special case where
fiber migration Eq. (2) is ignored. In this case, for each reg-
ular fiber j, the cross-sectional location ĥ

reg
j stays at a con-

stant distance R j from the yarn center (i.e., the Z-axis). Since
all fibers share the same pitch a, all cross-sectional fiber lo-
cations remain static relative to each other. In other words, all
fiber locations ĥreg

1 (z), ĥreg
2 (z), . . . are simply a rotated version of

ĥ
reg
1 (0), ĥreg

2 (0), . . . (see Figure 6-(a2)). In particular, for all j, it is
easy to verify that

ĥ
reg
j (z)M(z) = [R j cosθ j, R j sinθ j]≡ ĥreg

j (0), (10)

where M(z) is a 2×2 rotation matrix given by

M(z) =
[

cos(2πz/a) −sin(2πz/a)
sin(2πz/a) cos(2πz/a)

]
.

Therefore, to check if pyarn = [x,y,z] is contained in a fiber, we
can rotate [x,y] by applying the same M(z) as Eq. (10) to obtain
[x′,y′] := [x,y]M(z) and determine if [x′,y′] is covered by a cross-
sectional fiber in the cross section at z = 0 (Figure 6-(a2)).

To check if this is the case, we store ĥreg
j (0) for all fibers in all

yarns. Then, the whole search for fibers covering pyarn becomes a
2D nearest neighbor (NN) lookup around [x′,y′] in the cross sec-
tion Ayarn(0). This is a standard problem that has been thoroughly
studied and can be solved very efficiently. Notice that, compared
to fully realizing all fibers which requires storing complete fiber
curves, our method consumes orders of magnitude less memory as
it only stores two floating numbers per regular fiber.

With fiber migration: As demonstrated in prior work [SZK15,
ZLB16], real-world fibers generally do not stay at a constant dis-
tance from the yarn center. This irregularity is visually impor-
tant, but is challenging to model without a completely instantiated
model.

In our case, the migration of fibers is modeled procedurally via
Eq. (2). Then, Eq. (10) no longer holds: instead, ĥreg

j (z)M(z) now

(a) Yarn curve only (b) With fiber-level details

Figure 5: Fiber-level details are critical for producing realistic
silhouettes and close-up views.

Yarn
center Fiber 2

Fiber 1

Cross section
at 0 (Ayarn(0))

Cross section
at z (Ayarn(z))

Cross section

[x, y]
h1  (z)reg>

h2  (z)reg>

[x’, y’]

(a1) (a2)

M(z)

(b)

T1 T2h1  (0)reg>

h2  (0)reg>

[x’, y’]

Figure 6: Regular fiber lookups: A yarn-space point pyarn =
[x,y,z] is covered by a regular yarn if there is a fiber center ĥreg

j (z)
located close enough to [x,y] in the cross section Ayarn(z). (a) With-
out fiber migration, all fiber locations are identical at each cross
section up to a global rotation M. Thus, one can determine if the
rotated version [x′,y′] := [x,y]M(z) is close enough to some ĥreg

j (0)
within Ayarn(0). (b) With fiber migration, we reason about the tra-
jectory T j, namely all possible locations hreg

j (z)M(z) can take, for
each fiber j. This allows us to quickly prune all fibers whose tra-
jectories have stayed far from [x′,y′].

varies with z:

ĥ
reg
j (z)M(z) = [R j(z)cosθ j, R j(z)sinθ j], (11)

where R j(z) is given by Eq. (2). Since Eq. (11) does not equal
ĥ

reg
i (0) in general, whether pyarn = [x,y,z] is covered by a regu-

lar fiber can no longer be determined by checking if [x,y]M(z) lies
close enough to ĥreg

j (0) for some fiber j.

To tackle this problem, we consider all possible values
ĥ

reg
j (z)M(z) can take. If [x,y]M(z) stays far away from all these

values, [x,y,z] cannot be covered by fiber j. Precisely, let T j ⊂ R2

be the trajectory of ĥreg
j (z)M(z) for all z ∈ R. Then,

T j : = {ĥreg
j (z)M(z) | z ∈ R}

=
{
[Rcosθ j,Rsinθ j]

∣∣ R ∈ [rminR j,rmaxR j]
}
,

(12)

Algorithm 2 Regular fiber lookups.
1: function LOOKUPREGULAR(i, pyarn, b)
2: [x′,y′]← [x,y]M(z) . Assuming pply = [x,y,z]
3: Finding the bin Bk containing θ

′ := atan2(y′,x′)
4: for all T j associated with Bk do
5: Realize fiber j on the fly
6: if fiber j covers pyarn then
7: Store local material information (e.g., density) in b
8: return true
9: end if

10: end for
11: return false
12: end function
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Figure 7: Handling fiber migration: As preprocessing, we par-
tition the yarn-space cross section Ayarn(0) into a number of bins
B1,B2, . . . based on the azimuthal angle θ. For each bin Bk, we
store the list of fibers whose trajectories lie close enough to Bk.
At run-time, given the query point [x′,y′], we can quickly find the
bin containing this point and obtain the associated fibers. In this
example, [x′,y′] belongs to B1, and T1 and T2 are the two fiber
trajectories intersecting B1.

where the second equality follows Eq. (2) and (11). As cosθ j and
sinθ j are fixed in Eq. (12), T j represents a line segment with slope
tanθ j and intercept zero (see Figure 6-(b)). Since T j captures all
possible values of ĥreg

j (z)M(z), a yarn-space point [x,y,z] cannot
be covered by fiber j if the minimal distance between [x,y]M(z)
and T j is greater than the fiber radius. Thus, we can pre-compute
and store T j as tuples of (rminR j, rmaxR j, θ j) for all fibers. Notice
that, compared to the migration-free case where ĥreg

j (0) is used, T j
only takes one extra floating number per fiber to describe.

At render time, given pyarn = [x,y,z], we then select all fibers j
with trajectories T j lying close enough to [x′,y′] := [x,y]M(z). To
do this efficiently, we partition the domain of θ j, namely [0,2π),
into a few equal sized components B1,B2, . . .. For each component
Bt , we then associate to it a 2D interval (rminR j, rmaxR j) for all
j satisfying θ j ∈ Bt as preprocessing.2 At runtime, given [x′,y′],
we rewrite it in polar coordinates as [r′,θ′]. Let B ∈ {B1,B2, . . .}
be the component containing θ

′. We can then retrieve all intervals
associated with B that contain r′ and examine each of them to see if
the corresponding fiber actually covers the given point (Figure 7).

The full process of our regular fiber lookup technique is sum-
marized in Algorithm 2. Notice that Lines 4–6 realize all fiber j
associated with Bk to determine if any of them covers pyarn. It is
possible to further accelerate this step by introducing acceleration
structures over the trajectories T j (so that those faraway from pyarn

can be quickly pruned). However, we find this unnecessary in prac-
tice since a fine discretization of θ guarantees each bin Bk to be
associated with a small number of trajectories.

2 In practice, since each fiber has some non-zero radius rfiber, we make
each component Bt to store the list of fibers whose trajectories lie close
enough to Bt . In the example illustrated in Figure 7, for instance, fiber 5 is
associated with both B8 and B9.

4.4. Flyaway Fiber Lookups

As described in §3.2, flyaway fibers capture naturally arising irreg-
ularities and contribute significantly to visual realism. Compared to
regular fibers that share many common properties (e.g., pitch and
migration period), the flyaways are much more different individu-
ally, causing significant challenges for realization-free solutions.

4.4.1. Loop-Type Fibers

We first focus on loop-type flyaways. As described in §3.2, these
loops are created by mutating the regular ones. For each yarn i,
assume there are m constituent fibers each with k migration cy-
cles (see Figure 3-(b)). Let ρ

loop denote the density of loops. Then,
the expected number of loops in this yarn is mloop := ρ

looph where
h is the length of the yarn center. Since the loops are uniformly
chosen among all migration cycles, each cycle has a probability
of p := mloop/(mk) to be mutated. Given this probability, we can
then easily extend our regular fiber lookup routine to occasionally
scale up a fiber’s radius (according to randomly sampled Rloop

max).
In particular, when realizing a regular fiber j on the fly (Line 5 of
Algorithm 2), we further determine if the corresponding migration
cycle is mutated (see §5 for more details on how this can be done in
a consistent way). If so, we then use a different R j (given by Rloop

max
from the procedural model) to check if the mutated fiber covers
pyarn.

4.4.2. Hair-Type Fibers

With the loop fibers properly handled, we now focus on hair-type
flyaways described using Eq. (4). Compared to loop-type fibers, the
hair-type ones are even more irregular and challenging to handle
in a realization-minimizing way. In particular, unlike regular fibers
that are valid for the entirety of z ∈ [0,h], a hair fiber j is only de-
fined between z j,1 and z j,2 (see Eq. (4) and Figure 3-(a)). It follows
that, given pyarn = [x,y,z], every hair fiber j covering pyarn should
have z j,1 and z j,2 with z ∈ [z j,1− rfiber, z j,2 + rfiber]. Notice that we
extended the interval of [z j,1,z j,2] using the fiber radius rfiber since
pyarn with z slightly smaller than z j,1 or greater than z j,2 can still
be within the range of rfiber to the fiber center. Let J (z) denote the
set of hair fibers satisfying this condition:

J (z) := { j | z ∈ [z j,1− rfiber, z j,2 + rfiber]}. (13)

Then, obtaining J (z) becomes an important step for looking up
hair-type flyaways at pyarn.

We now introduce two complementary solutions to obtain J (z)
at render time. First, we present a purely realization-free solution
where no per-fiber information has to be pre-generated or stored.
Second, we introduce a solution which stores partial information
for each hair fiber but offers significantly superior performance.

Fully realization-free solution: According to Eq. (13), each j in
J (z) should satisfy z ≥ z j,1− rfiber and z ≤ z j,2 + rfiber. In other
words, z j,1 ≤ z+ rfiber and z j,2 ≥ z− rfiber. Thus, by embedding
each hair fiber j into a 2D Euclidean space at z j := (z j,1,z j,2), we
know that

z j ∈ D(z) where D(z) := [0,z+ rfiber]× [z− rfiber,h].

Computing J (z) then becomes finding all hairs embedded within
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Algorithm 3 Detecting all hair fibers active at z (realization-free).
1: function ACTIVEFIBERS(z, I, Ω)
2: n← |I|
3: if n = 0 or Ω∩D(z) = ∅ then
4: return ∅
5: else if n = 1 then
6: Draw z j . Assuming I = { j}
7: return z j ∈ D(z) ? { j} : ∅
8: else
9: Subdivide Ω into four sub-domains Ω1,Ω2,Ω3,Ω4

10: pk← P[z ∈Ωk | z ∈Ω] for k = 1,2,3,4
11: Draw (n1,n2,n3,n4) from multinomial distribution

with n trials and probabilities (p1, p2, p3, p4)
12: Partition I into I1, I2, I3, I4 according to n1,n2,n3,n4
13: return ∪4

k=1ACTIVEFIBERS(z, Ik,Ωk)
14: end if
15: end function

the rectangle D(z). Since z j,1 and z j,2 for all j are independent and
identically distributed, one can leverage the framework introduced
by Jakob et al. [JHY∗14] to obtain all z j in D(z) as follows.

The basic idea is to traverse an (implicit) point hierarchy in
which each node corresponds to an axis-aligned bounding box. At
a node corresponding to Ω ⊂ R2 in which a set of n hair fibers
are embedded, one can split Ω into four equal sized sub-domains
Ω1,Ω2,Ω3,Ω4. According to the procedural model, the probabil-
ity pk for a fiber to be further contained in Ωk can be evaluated
for k = 1, . . . ,4. Then, by sampling a multinomial distribution, the
number nk for fibers belonging to Ωk can be obtained, which then
allows this process to be recursively applied for each Ωk and nk un-
til reaching a leaf with n≤ 1. We summarize this entire process in
Algorithm 3. Notice that if we seed the random number generator
used by each node consistently, the outcome of Algorithm 3 will be
fixed for any given z, I, and Ω. Please refer to §5 for more details
on consistently seeded random number generation. Lastly, we have
J (z) = ACTIVEFIBERS(z,{1,2, . . . ,m}, [0,h]2) where m indicates
the total number of hair fibers in the current yarn.

Hybrid solution: Although the fully realization-free solution re-
quires no pre-stored information, several steps of Algorithm 3, such
as sampling multinomial distributions, are computationally expen-
sive. Thus, we present an alternative solution providing a good bal-

Z

Hair 1
Hair 2

Hair 3

B1 B2 B3 B4 B5

B1: J = {1}
B2: J = {1, 2}
B3: J = {2}
B4: J = {2, 3}
B5: J = {2}

rfiber

Figure 8: Hybrid approach: discretizing the Z dimension based
on the two endpoints (i.e., z j,1−rfiber and z j,2+rfiber) of each hair-
type fiber j. In this example, there are three hair-type fibers that
yield a discretization of five bins B1,B2, . . . ,B5. The set of active
fibers J remains constant in each bin.

ance between performance and memory consumption. We use this
solution to generate all results in this paper.

In particular, we pre-generate the Z coordinates for all hair-
type fibers (while leaving the other dimensions realized on de-
mand). Then, to efficiently determine J (z) for a given yarn, we
pre-discretize the Z dimension using z j,1− rfiber and z j,2 + rfiber for
each constituent hair-type flyaway fiber j (see Figure 8). For each
bin with endpoints z↓ and z↑, we further store a list indicating ac-
tive hair fibers (i.e., all j with z j,1 ≤ z↓ and z j,2 ≥ z↑). At runtime,
we can then quickly select the bin containing z using binary search,
which in turn gives J (z).

When J (z) is determined (using either the full or the hybrid ap-
proach), we then realize other parameters used in Eq. (4) for each
active hair fiber using consistently seeded random number genera-
tors (§5). Lastly, we check if any of them indeed covers pyarn.

4.5. Discussion

The main dimension: In §4.4.2, both our solutions use dimension
Z to reason about fiber activeness via Eq. (13). In principle, since
hair-type flyaway fibers can also be parameterized using R and θ,
each of these dimensions (or even a combination of multiple of
them) can be used to define the set J of active fibers. We choose Z
as the “main” dimension because the hair fibers are generally short
and sparsely distributed in this dimension. In fact, according to our
experiments, our realization-minimizing solution is even faster than
the fully realized version where all hair fibers are pre-generated and
looked up using a Kd-tree at run-time. This is because although our
method may have to examine more candidate fibers, the fact that
each discretized bin only contains a small number of active fibers
makes the overhead of our approach lower than that introduced by
the Kd-tree traversals.

Multi-ply yarns: Up to this point in this section, we have assumed
Eq. (1), (2), and (3) describe fibers in entire yarns. In case of multi-
ply yarns, however, these equations actually capture fibers in indi-
vidual plies which in turn are twisted to form yarns. We chose to
not describe this further complexity earlier for ease of explanation.
Our technique can be easily extended to handle textiles with multi-
ply yarns. Given a point pyarn = [x,y,z] in the yarn space, one can
further transform it to pply in the ply space by finding the cross-
sectional ply center closest to [x,y]. The resulting pply can then be
fed into the following steps of our approach for regular and flyaway
lookups.

5. Implementation Details

We now describe implementation specifics that complete the de-
scription of our approach. In §5.1, we describe our formulation of
yarn curves and how the normal and binormal needed by Eq. (7)
are obtained. Then, §5.2 presents how to efficiently find the closest
point on a set of yarn curves from any given point, which is needed
by our yarn lookup step (§4.2). Lastly, we discuss in §5.3 how ran-
dom numbers can be generated in a consistent way, an important
ingredient for our flyaway lookups (§4.4).
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Figure 9: Upper bound of the difference between point-to-vertex
and point-to-curve distances: when the union of spheres S(pi,k,δi)
fully covers the yarn curve αi, for any p, the difference between
point-to-vertex distance d1(p) (i.e., the minimal distance from p
to one of the vertices pi,k) and point-to-curve distance d2(p) (i.e.,
the minimal distance from p to the curve αi) will never exceeds δi.
Namely, d1(p)−d2(p)≤ δi for all p.

5.1. Yarn Curve Representation

Yarn curve representation: To ensure that t andn indeed provide
smoothly rotating local frames, we describe the input curveα using
cubic Hermite splines [Kre10] with C1 smoothness. Some previous
work represents yarn and fiber curves using piecewise linear poly-
lines [KSZ∗15, ZLB16]. We found that as polylines offer only C0

continuity, they can have artifacts in final renderings.

Rotation minimizing frames: Eq. (7) requires the normal di-
rection n to be specified everywhere on the curve α such that
〈n(z),t(z)〉 = 0 for all t. One simple solution is setting n(z) =
( d

dt t)(z) = ( d2

dt2α)(z). This, unfortunately, is known to have several
drawbacks: first, ( d

dt t)(z) vanishes at locally straight (i.e., zero-
curvature) regions; second, it can change rapidly (or even to its
opposite) when transitioning from positively to negatively curved
areas. These drawbacks can lead to unsatisfactory rendered re-
sults. We, therefore, determine n using rotation minimizing frames
(RMF) [Klo86, Blo90, WJZL08]. In particular, we obtain n with
the rotation-based RMF introduced by Bloomenthal [Blo90].

5.2. Point-to-Curve Projection

A key ingredient of our yarn lookup step (§4.2) is to find all rel-
evant yarns, as well as to project the given fabric-space point p
onto each of them. Since the projection is quite expensive compu-
tationally, we prune the yarn curves as much as possible beforehand
by leveraging nearest-neighbor (NN) searches on all vertices (i.e.,
endpoints of all spline segments) of the input yarn curves. Specif-
ically, we create a point Kd-tree storing all these vertices during
preprocessing.3 At render time, given p, we query the Kd-tree for
all points within a certain radius Rquery around p. The yarns corre-
sponding to the outcome of this search are then considered relevant
and used for projection computations. What should Rquery be? We
cannot simply set Rquery to the (maximal) yarn radius because the

3 This point Kd-tree has to be rebuilt whenever the yarn curves deform,
which needs to be performed per-frame for animated scenes. Fortunately,
the computational overhead for building this Kd-tree is negligible compared
to rendering a full image.

minimal distance from p to a control point is generally greater than
that to the actual splines (Figure 9). Thus, we need to enlarge the
lookup radius so that we conservatively find all yarns that might
contain p.

For each yarn i with vertices pi,1,pi,2, . . ., given p, let d1 and
d2 respectively denote the minimal distances from p to the vertices
and to the yarn curve αi. Namely,

d1(p) := min
k
‖p−pi,k‖, d2(p) := min

t
‖p−αi(t)‖.

Then, if we can estimate an upper bound δi of d1(p)− d2(p) for
any p, the NN search radius Rquery can then be set to Ryarn

i +δi.

In practice, to obtain δi, we consider growing spheres centered
at all the vertices pi,1,pi,2, . . . until their union fully covers the
curve αi (Figure 9). Concretely, we search for δi ∈ R+ such that
αi ⊂ ∪kS(pi,k,δi), where S(pi,k,δi) denotes the sphere centered at
pi,k with radius δi. This can be done by examining each spline seg-
ment k, computing its bounding box using the two endpoints pi,k,
pi,k+1 and associated tangents, and ensuring that this box is con-
tained in S(pi,k,δi)∪S(pi,k+1,δi).

Lastly, for each relevant yarn i, we compute the projection q of p
onto its center curve αi. This requires solving a piece-wise quintic
equation, and we utilize an efficient implementation offered by the
SplineLibrary [Mah17].

5.3. Consistently Seeded Random Numbers

A key ingredient of our flyaway lookup (§4.4) is generating random
numbers in consistent ways. For instance, when handling loop-type
fibers, we need to randomly select fiber migration cycles in each
yarn and mutate them. To ensure the same set of cycles are always
chosen for a given yarn i, one possibility is to reseed the random
number generator using i (or some pre-determined function of i)
before the random selection starts. We, however, noted that such
reseeding can be expensive in practice. Instead, we use quasi Monte
Carlo (QMC) sequences, the van der Corput sequence [KN12] in
particular, indexed using the yarn and fiber indices.4 For instance,
if accessing each yarn requires N random numbers, we associate
elements with indices N(i− 1)+ 1, N(i− 1)+ 2, . . . , N · i in the
QMC sequence to yarn i.

5.4. Rendering Our Model

We implemented our model as a specialized volume allowing
the query of material density and orientation information at in-
dividual 3D locations. This volume then defines an anisotropic
medium [JAM∗10b] that can be rendered using standard Monte
Carlo methods. We generated all results in this paper using volume
path tracing where the free distance between consecutive scattering

4 In principle, the random numbers should be independent, which is not
strictly the case for QMC sequences. Fortunately, we observed no visual ar-
tifact caused by correlated samples. Further, this correlation can be reduced
by taking every n-th sample from the QMC sequence by simply multiplying
all indices by n (for some constant n), which is a common practice used by
Markov-Chain Monte Carlo methods to generate near-independent samples.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Luan et al. / Fiber-Level On-the-Fly Procedural Textiles

events are sampled using delta tracking [WMHL65]. Notice that
our technique is orthogonal to the choice of the phase function. In
practice, we used the micro-flake phase function [ZJMB11] for all
our results.

6. Results

We demonstrate the effectiveness of our technique through exper-
imental results. In §6.1, we evaluate our technique in comparison
with alternatives. Then, §6.2 shows rendered results of procedural
textiles that are very challenging for prior methods, and have typi-
cally been unrenderable in the past. Last, we discuss limitations of
our technique and possible future research topics.

6.1. Evaluations

Performance: In experiments on moderate sized models, we found
that our method runs at approximately the same speed5 as a refer-
ence solution where all fiber curves are fully realized, and stored
in a Kd-tree (in preprocess) for render-time volumetric lookups.
Our extra computation does not make our technique slower than the
reference because it exploits the mathematical structure of the pro-
cedural models, and mostly works in lower-dimensional domains
(e.g., yarn cross sections). This introduces lower overhead com-
pared to the reference which works purely in 3D.

Other reference solutions are possible, including using fully vox-
elized volumes and fiber meshes. However, full voxelization is
impractical even for moderate sized models (without instancing).
Fiber meshes are not volumetric, and thus are so different that mak-
ing an apples-to-apples comparison to these methods is not easy.

Comparison to core-fiber approximation: Wu and Yuk-
sel [WY17] have recently introduced a core-fiber approximation to
enable real-time visualization of procedural textiles. This technique
uses a “core” fiber, which is effectively a displacement mapped
pipe, to approximate a tightly packed collection of regular fibers. In
theory, this method can also be adapted for physically based render-
ing applications. We choose not to take this route for the following
reasons.

First, this approximation has difficulties handling general fiber
migrations. In their work, Wu and Yuksel used fiber migrations
with repeating cycles identical to those of fiber twisting (i.e., let-
ting s = 1 in Eq. (3) in Zhao et al.’s work [ZLB16] where s denotes
the ratio between a migration cycle and a fiber-twisting cycle). No-
tice that using s = 1 is important for an efficient implementation of
the core-fiber approximation because this causes the core to have
short identical segments. Significant storage savings can then be
achieved by storing only one instance of these segments. Unfortu-
nately, as shown in Figure 10-a, the value of s affects the overall
shape of a yarn greatly. When handling models with migration cy-
cles incoherent with fiber twisting, much longer segments have to
be stored, reducing the overall efficiency of the core-fiber approxi-
mation. For instance, a2 and a3 in Figure 10 requires 2–3 times of

5 For example, rendering a scene with 100 yarns and 29,800 fibers using
the reference solution takes 15.8 seconds at one million pixel resolution and
one sample per pixel, while our methods takes 15.0 seconds.

the storage for the height map when s equals 0.5 or 1 (compared to
s = 1). For more general s values (e.g., 1.23), it can be difficult to
find a segment on the core that contains integer numbers of cycles
for both migration and twisting, leading to even higher overhead.

Further, the use of displacement mapping has difficulties cap-
turing overhang structures resulting from strongly migrated fibers,
as demonstrated in Figure 10-b. In this example (generated with
s = 1.2), when representing 60% of the regular fibers, the core fails
to accurately resemble the combined shape of these fibers, chang-
ing the appearance at both the micro and the macro scale. Although
this problem can be eased by reducing the amount of fibers cap-
tured by the core, doing so will inevitably negate the performance
gain provided by the core fiber.

In summary, their technique is great for real-time visualizations
but largely complementary to our method. Our focus is more on
high-fidelity and predictive rendering of procedural textiles.

Comparison to synthesis-based method: Structure-aware synthe-
sis developed by Zhao et al. [ZJMB12] generates large-scale mod-
els based on a small database of example tiles. Beside the inconve-
nience of requiring many example tiles for variety, there are seams
in the synthesized models at the yarn level. This is because adja-
cent tiles in these models are not guaranteed to be continuous along
the boundary. Further, one example tile can appear many times in
the resulting model, leading to periodic patterns. Conversely, our
method does not rely on tiling and is free of these artifacts (see
Figure 11).

6.2. Main Results

We implemented our procedural textile model as a customized vol-
umetric data source for the Mitsuba renderer [Jak15]. We now
show results rendered using our system for a few virtual scenes
with large textiles that would be very difficult (if not impossible) to
render if fully realized.

Woven fabrics: Figure 12 shows two woven textiles rendered with
our technique at four scales. On the top, Woven 1 is a fabric in
which the colors of weft yarns vary continuously from purple to
green. This model is challenging for synthesis-based approaches
because the continuous change of yarn colors would require too
large a set of exemplars. Our technique, on the other hand, can ren-
der this model with ease, producing a highly detailed and artifact-
free result. Note that the scene has 1,920 yarns, composed of
549,120 fibers, and represented by 3,690,086,400 control points.

The bottom row shows Woven 2, a more typical pattern with
banding in the background, which would again need too many ex-
emplars. Our result accurately captures the banding variations and
remains realistic at all four scales. The fabric is composed of 2,000
yarns, 488,000 fibers, and 3,135,283,200 control points.

Knitted fabrics: Physically accurate knitted fabrics with fiber-
level details have been lacking because they normally contain large
structures that cannot be easily scanned or synthesized. Leveraging
simulated yarn curves, our technique enables physically based ren-
dering of highly realistic knitted fabrics with fiber-level details that
are crucial for preserving the fuzziness of these materials. Figure 13
contains two examples. On the top is a sweater from previous work
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(a1) s = 1.0 (a2) s = 0.5 (a3) s = 1.5 (b1) Ours (exact) (b2) Core-fiber approx.

Figure 10: Comparison to the core-fiber approximation: The core-fiber approximation [WY17] has its limitations when handling fiber
migration. First, this method works most efficiently when the migration shares the same period with the twisting of fibers (i.e. s = 1). Models
shown in (a2) and (a3), on the other hand, would incur higher overheads. Second and more importantly, this representation uses height maps
that cannot accurately capture overhang structures, affecting the appearance of a fabric at both micro and macro scales (b). In this figure,
all rendered yarns and fabrics contain only regular fibers (and no flyaways).
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Figure 11: Comparison to synthesis-based method: Models syn-
thesized using existing technique [ZJMB12] suffer from seams and
repeated patterns at the yarn level. Our model does not rely on in-
stancing, and thus, is free of these artifacts at all scales.

by Yuksel et al. [YKJM12]. A full realization of this model involves
35,624 fibers with 348,920,000 control points. Our result success-
fully captures the fuzziness of this material due to the abundance
of flyaway fibers. The bottom of Figure 13 shows a larger knitted
sample with yarn curves simulated by Kaldor et al. [KJM08]. Fully
realizing this model would require storing 286 very long fibers with
1,258,400,000 control points, which takes 15 GB of storage. Our
method only requires storing 1 yarn curve with 4,400,000 control
points, and is able to generate all fiber-level details on the fly.

Lastly, in Figure 1, we show a modified Sponza scene from Cry-
tek with the fabrics replaced by high-fidelity procedural models.
This scene contains 12 textiles composed of 33,302 yarns, with

8,125,688 fibers, and 70,494,393,312 control points. At this scale,
a full realization would take 867 GB of storage and is virtually im-
practical. Our technique, on the other hand, renders this scene on a
single server.

Table 1 presents performance and data size results for all mod-
els in Figures 1, 12, and 13. Also, in the accompanying video, we
show that our method can generate temporally consistent results
and seamless, arifact-free zooms across greatly varying scales.

Limitations and future work: Our technique becomes expensive
when handling hair-type fibers in extremely large scenes: the pure
scheme is impractically slow, while even the hybrid scheme could
require too much storage. In the future, improved hair-type fibers
models and/or lookup algorithms are worth exploring. In addition,
level-of-detail is not yet supported by our method. Given the com-
plexity of procedural textiles, future research along this direction
can be highly beneficial.

7. Conclusion

Predictively modeling and reproducing textile appearance is im-
portant for many applications in design, prototyping, and entertain-
ment. Procedural models offer high fidelity and detail while en-
joying compact representation and easy editability. However, these
models have to be fully realized for physically based rendering,
causing significant problems when rendering large textiles. We in-
troduce a realization-minimizing technique to address this problem.
Our method leverages new algorithms and data structures to look
up both regular and flyaway fibers on the fly while storing only
a fraction of full model realizations. Our method enables physi-
cally based rendering of large virtual textiles that have previously
been very difficult, if not impossible. We believe these kinds of ap-
proaches are critical to enable the full power of procedural models.

Acknowledgement

The authors would like to thank their funding agencies for their
generous support including NSF CHS 1513967, CHS 1617861,
Google, Adobe, and AWS Cloud Credits for Research.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Luan et al. / Fiber-Level On-the-Fly Procedural Textiles

1× 5× 25× 125×

Woven 1

1× 5× 25× 125×

Woven 2

Figure 12: Rendered results (woven): we created two large textiles with diverse yarn colors that are very challenging for previous methods
to model. Woven 1 (top) and Woven 2 (bottom) both have approximately 2 thousand yarns, 500 thousand fibers, and over 3 billion control
points. Procedural models can handle such diversity trivially. Table 1 presents data size and performance information.

1× 3× 9× 27×

Knitted 1

1× 5× 25× 125×

Knitted 2

Figure 13: Rendered results (knitted): fiber-level details are crucial for reproducing the fuzziness of knitted fabrics. Our method enables
physically based rendering of these fabrics, which have been largely lacking since they cannot be easily scanned or synthesized. Please see
Table 1 for data size and performance statistics.
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Appendix A: Fiber Scattering Profiles

Previously, a few models have been proposed to describe light scat-
tering within cloth fibers. We briefly recap these models; please re-
fer to the previous work [JAM∗10a, ZJMB11, HDCD15, KSZ∗15]
for more details.

Volumetric: Textiles with fiber-level details can be represented as
anisotropic participating media. Under this framework, light trans-
port within a medium is governed by three parameters: the extinc-
tion coefficient σt , single-scattering albedo α, and the phase func-
tion fp. In case of volumetric cloth, these parameters are further
specified using the micro-flake model. Given any point p inside the
cloth volume, parameters including local material density den(p),
direction dir(p), fiber roughness σ(p) and albedo α(p), are ex-
pected to be provided by the user. Then, a distribution D(p,m) of
flake normals m at p (analogous to normal distributions used by
micro-facet models) is determined using dir(p) and σ(p). Lastly,
the three radiative transfer parameters σt , α, and fp are obtained
using den(p), α(p), and D(p,m) [JAM∗10a, HDCD15].

Fiber-based: Alternatively, fiber meshes can be used to describe
textiles with rich detail. In this case, bidirectional curve scattering
distribution functions (BCSDFs) are generally used to describe how
light scatters off individual fibers. The BCSDFs generally involve a
few modes capturing light-fiber interactions with varying numbers
of reflections and transmissions.

Khungurn et al. [KSZ∗15] demonstrated that both volumetric
and fiber-based models are similar in quality. Since the former usu-
ally renders faster, and is more amenable to realization-minimizing
approaches, we chose to use the volumetric representation in this
paper.
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