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A Compact Representation of Measured BRDFs Using Neural Processes
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Fig. 1. Our neural process-based approach learns a compact representation from two measured BRDF datasets, MERL and EPFL. BRDFs are encoded with

high fidelity. As an example, the reconstructed BRDF greased-covered-steel has a much higher accuracy than that of prior methods. Additionally, the learned

space preserves traits of BRDFs locally so that we can interpolate existing BRDFs to get new ones.

In this article, we introduce a compact representation for measured BRDFs

by leveraging Neural Processes (NPs). Unlike prior methods that express

those BRDFs as discrete high-dimensional matrices or tensors, our tech-

nique considers measured BRDFs as continuous functions and works in cor-

responding function spaces. Specifically, provided the evaluations of a set of

BRDFs, such as ones in MERL and EPFL datasets, our method learns a low-

dimensional latent space as well as a few neural networks to encode and

decode these measured BRDFs or new BRDFs into and from this space in a

non-linear fashion. Leveraging this latent space and the flexibility offered

by the NPs formulation, our encoded BRDFs are highly compact and offer

a level of accuracy better than prior methods. We demonstrate the practi-

cal usefulness of our approach via two important applications, BRDF com-

pression and editing. Additionally, we design two alternative post-trained

decoders to, respectively, achieve better compression ratio for individual

BRDFs and enable importance sampling of BRDFs.
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1 INTRODUCTION

Measured BRDFs faithfully record real-world materials’ re-
flectance profiles and are capable of producing renderings with a
remarkable level of fidelity. Consequently, they are used in many
real-world applications where visual realism is crucial (e.g., prod-
uct design and online retail).

As a cost for offering high realism, measured BRDF models are
generally data-intensive, making them not only expensive to store
and transfer but also difficult to manipulate. Analytical BRDF mod-
els, on the contrary, are highly compact and easy to edit but rely on
hand-crafted parameterizations that limit their capabilities of accu-
rately reproducing richly diverse appearances of many real-world
materials.

To bridge the gap between measured and analytical BRDF mod-
els, a few data-driven representations have been introduced for
measured BRDFs. These techniques can be broadly put into two
categories: factorization-based and fitting-based.

Factorization-based methods [Bagher et al. 2016; Bilgili et al.
2011; Lawrence et al. 2006, 2004; Matusik et al. 2003a; Nielsen
et al. 2015; Tongbuasirilai et al. 2019] treat entire measured BRDF
datasets as large matrices (or tensors) and approximate these struc-
tures using low-rank representations obtained using techniques
like principal component analysis (PCA). These techniques
generally require densely sampled input to work properly. Further-
more, because of the discrete nature of these methods, additional
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interpolations are typically required to render the resulting BRDFs
to avoid visible artifacts.

Fitting-based methods [Bagher et al. 2012; Brady et al. 2014;
Holzschuch and Pacanowski 2017; Löw et al. 2012; Pacanowski
et al. 2012; Sun et al. 2018], in contrast, use analytic models or
manually picked basis functions to fit measured BRDFs. Unfor-
tunately, simple analytic models usually lack the representation
power to reproduce detailed reflectance of real-world materials,
while sophisticated ones (e.g., those utilizing complex multimodal
functions) can make the fitting process unstable or prone to local
minima.

In this article, we introduce a new technique to represent mea-
sured BRDFs in a compact and accurate fashion. Unlike prior meth-
ods, our representation does not discretize measured BRDFs into
matrices or tensors. Instead, we utilize Neural Processes (NPs) to
express BRDFs as continuous functions (depicted using neural net-
works) with learned latent representations. Compared with state-
of-the-art methods [Bagher et al. 2016; Hu et al. 2020; Nielsen et al.
2015; Sun et al. 2018], our representation enjoys the advantages of
(i) offering higher accuracy, (ii) requiring lower storage, and (iii) re-
taining a continuous latent space with semantically meaningful
structure that facilitates BRDF interpolation.

We demonstrate the practical usefulness of our approach via
two important applications: BRDF compression and editing. To
this end, we further design two post-trained networks to improve
the efficiency of compressing small sets of BRDFs and to enable
importance sampling of BRDFs, respectively.

Concretely, our contributions include:

— A new compact representation of measured BRDFs based
on the NPs (Section 3) and an end-to-end pipeline to acquire
NP-based representations based on measured BRDF datasets
(Section 4).

— A systematic analysis of the learned latent space of our
NP-based representations (Section 5).

— Post-trained hypernetworks for efficient compression of indi-
vidual BRDFs (Section 6) and a new technique for importance
sampling according to our NP-based BRDFs (Section 7).

2 RELATED WORK

BRDF models have been proposed and developed for decades. We
refer readers to a comprehensive survey of BRDF representation
and acquisition [Guarnera et al. 2016] and only address most rele-
vant works in this section.

2.1 Analytic BRDF Models

Early BRDF models were derived empirically by fitting reflectance
data to analytical formulas and were thereby named phenomeno-
logical models. Some of the most important phenomenologi-
cal models are Phong [Phong 1975], Blinn-Phong [Blinn 1977],
Ward [Ward et al. 1992], Lafortune [Lafortune et al. 1997], and so
on. Other types of BRDF models, physically-based models [Cook
and Torrance 1982; Jakob et al. 2014; Yan et al. 2014], that are based
on physics and optics, were introduced to better capture the rough-
ness at a fine scale. In this work, we represent the BRDF function
through neural networks implicitly instead of an analytic form.

2.2 Measured BRDF Datasets

Matusik et al. [2003a] measured 100 real-world isotropic materi-
als, from soft diffuse materials to hard specular materials. These
measured BRDFs have been widely used and known as the MERL
dataset. Filip and Vávra [2014] constructed the UTIA dataset
for anisotropic BRDFs. Lombardi and Nishino [2012] obtained a
dataset of objects under natural illumination with calibrated HDR
information. Recently, Dupuy and Jakob [2018] employed an adap-
tive BRDF parameterization and sampling technique to acquire 51
isotropic and 11 anisotropic BRDFs, of which the dataset is named
EPFL dataset. In our article, we focus only on isotropic BRDFs
and analyze the distribution of BRDFs across the MERL and EPFL
datasets.

2.3 Regression on Measured BRDF Datasets

The development of measured BRDF datasets inspired researchers
to improve the representation and model of BRDFs. More precise
analytic models [Bagher et al. 2012; Brady et al. 2014; Holzschuch
and Pacanowski 2017; Löw et al. 2012; Pacanowski et al. 2012] were
proposed to fit on measured datasets. The relation between a spe-
cific analytic form, the Lambertian and GGX models, and measured
BRDFs was analyzed [Sun et al. 2018]. In our article, the neural
network-based representation better preserves the details in the
measured datasets than those analytic models. In Section 6.3, we
compare our work with the latest approach [Sun et al. 2018]. Re-
sults show that our method is a level of accuracy better at a low
dimension of representation.

Another kind of regressions, BRDF decomposition methods,
have been proposed to simplify the structure of measured BRDFs,
including PCA decomposition [Matusik et al. 2003a; Nielsen
et al. 2015; Serrano et al. 2016], non-negative matrix factoriza-
tion [Lawrence et al. 2006, 2004], gaussian mixture [Sun et al. 2007],
tensor decomposition [Bilgili et al. 2011; Tongbuasirilai et al. 2019]
and non-parametric factor model [Bagher et al. 2016]. However,
these approaches heavily rely on the discretization of incoming
and outgoing directions. Therefore it is intractable for them to han-
dle the EPFL dataset with adaptive and different sampling direc-
tions per BRDF. In contrast, our approach does not require certain
discretization of directions by treating BRDFs as continuous func-
tions and perform regression in a continuous domain. As a result,
our approach not only achieves a compact compression across dif-
ferent measured BRDF datasets but also provides a continuous la-
tent space for BRDF interpolation and exploration.

Soler et al. [2018] proposed a parameterization utilizing Gauss-

ian Process Latent Variable Model (GPLVM) [Lawrence 2005]
to embed measured BRDFs into a low-dimensional manifold. Their
approach shares the basic idea of our work that performs regres-
sions on BRDFs in function space. However, the latent variable
model that they used implies an implicitly non-linear mapping
from the compact manifold to the BRDFs. Therefore, their ap-
proach has to store a full MERL dataset to perform the BRDF inter-
polation and thereby is unable to compress the data.

Several recent works start to encode BRDFs through deep neu-
ral networks. Many of them [Deschaintre et al. 2018; Gao et al.
2019] focus on an inverse problem that takes an image as input
and outputs estimated BRDF (or SVBRDF) parameters. Moreover,
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Fig. 2. Overview of our approach. For all BRDFs in measured datasets, we

encode observations of one material by function l to the posterior in latent

space of BRDF functions, which is learned by NPs. Using a latent vector

sampled by posterior, a function д is used to approximate the BRDF re-

flectance for given incoming directions ωi and outgoing directions ωo.

Maximov et al. [2019] introduced deep appearance maps by using a
small FC network to describe a material. Zsolnai-Fehér et al. [2018]
uses a neural network to predict the rendering image and preview
a static scene fast. Rainer et al. [2019] design a continuous decoder
for an autoencoder to compress BTF datasets. However, all of these
neural network-based approaches do not target the goal of this ar-
ticle that computes and explores a latent space to represent mea-
sured BRDFs. Recently, Hu et al. [2020] introduced a CNN-based
autoencoder to extract a low-dimensional manifold from the MERL
dataset. Although this method shares a similar flavor as our tech-
nique, it relies on conventional discretized expressions of BRDFs.
Our representation is more compact and provides higher recon-
struction accuracy, which we will demonstrate in Section 6.3.

Beyond numerical metrics defined on measured BRDFs, per-
ception metrics were also introduced to derive low-dimensional
perceptual embeddings [Lagunas et al. 2019; Matusik et al.
2003a; Serrano et al. 2016]. We consider the selection of error
metrics complementary to this work and use L2 loss for its
simplicity.

3 OVERVIEW

We now present an overview of our technique. At the core of our
technique is a new compact and probabilistic representation of
measured BRDFs: We regard a BRDF f as a sample drawn ran-
domly from the set F of all possible BRDFs. We note that, de-
spite being modeled in a stochastic fashion, the evaluation of any
BRDF f will remain mostly deterministic (that is, have negligible
variance).

To obtain the corresponding probability distribution, we utilize
a data-driven approach by consulting a collection of measured
BRDFs FM treated as observations of f (drawn from F ).

Several previous works on stochastic processes tackled such a re-
gression problem, such as Gaussian Processes (GPs) [Rasmussen
2003] and recently proposed NPs [Garnelo et al. 2018]. Compared
to GPs, NPs show better adaptivity to data (as GPs usually require
pre-defined kernels, but NPs do not), and are more efficient to train
and evaluate.

We utilize NPs to express the distribution of measured BRDFs
which, as we will describe later in this article, can be used for BRDF
reconstruction and interpolation. As outlined in Figure 2, we em-
ploy a high-dimensional latent vector z and a (neural) function д

such that a BRDF f can be approximately expressed as

f (ωi,ωo) ≈ д(ωi,ωo;z), (1)

whereωi andωo are, respectively, the incident and outgoing direc-
tions. Furthermore, we represent a collection of measured BRDFs
FM := { fk : k ∈ M } with the same function д and a set of la-
tent vectors {zk : k ∈ M } such that fk (ωi,ωo) ≈ д(ωi,ωo;zk ) for
all k .

By treating the latent vectors zk as observations of some ran-
dom variable, Equation (1) allows a set of measured BRDFs FM to
be modeled in a probabilistic fashion as follows. We assume zk to
be normally distributed with some mean μk and covariance Σk for
each k ∈ M . In this way, modeling FM boils down to (i) determin-
ing the function д in Equation (1), and (ii) finding the distribution
parameters μk and Σk for all k .

In practice, a measured BRDF f is typically expressed as a se-
quence observations X := (x1,x2, . . .) and Y := (y1,y2, . . .) such
that x j encodes the lighting and viewing directions of the jth ob-
servation and yj := f (x j ) denotes the corresponding BRDF value.
Provided a collection of measured BRDFs FM := { fk : k ∈ M }, let
Xk := (xk, j : j = 1, 2, . . .) and Yk = (yk, j : j = 1, 2, . . .) de-
note the observations of fk for all k . Furthermore, let XM := (Xk :
k ∈ M ) and YM := (Yk : k ∈ M ) indicate observations of all the
BRDFs. Then, the target likelihood p (YM |XM ) can be expressed
as:

p (YM |XM ) =
∏

k ∈M

∫
p (Yk |Xk ,zk ) p (zk ) dzk , (2)

wherep (Yk |Xk ,zk ) models the reconstruction error and measure-
ment noise:

p (Yk |Xk ,zk ) = N (Yk ; д(Xk ,zk ), Σerr) , (3)

where N (·; д(Xk ,zk ), Σerr) denotes the pdf of the (high-
dimensional) normal distribution with mean д(Xk ,zk ) and vari-
ance Σerr. In Equation (2), the prior of all possible BRDFs p (zk ) is
generally difficult to obtain. Thus, we approximate this term using
the conditional posterior:

p (zk ) ≈ q(zk |Xk ,Yk ) = N (zk ; μk , Σk ), (4)

which follows the aforementioned assumption of zk being nor-
mally distributed. Let l be a function that predicts the distributional
parameters μk and Σk of zk given the observations Xk , Yk :

l (Xk ,Yk ) = (μk , Σk ). (5)

Then, Equation (4) becomes

q(zk |Xk ,Yk ) = N (zk ; l (Xk ,Yk )). (6)

To realize the framework outlined in Equations (1–6), we ex-
press functionsд and l using deep neural networks that are trained
by maximizing the target likelihood of Equation (2) using a set of
training BRDFs FM .

With properly trained д and l , all measured BRDFs (similar to
those in FM ) can be represented in a highly compact fashion.
Specifically, let X and Y be the observations of a measured BRDF
f and lμ denote the μ component returned by l (representing the
expected value of the corresponding latent vector z). Then, we
have

f (ωi,ωo;z) ≈ д(ωi,ωo; lμ (X ,Y )). (7)
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Our technique enjoys the following properties:

— It provides a low-dimensional latent space in which new
BRDFs could be efficiently defined or interpolated.

— The resulting BRDFs are continuous in incident and outgoing
direction with good consistency.

— This technique allows the training observations Xk ,Yk to
have different sampling patterns across BRDFs, making it
easy to combine multiple measured datasets.

In what follows, we provide more details on applying NPs to mea-
sured BRDF in our framework.

4 LEARNING THE LATENT SPACE OF BRDFS

We now detail our realization of the NPs framework outlined in
Section 3. Figure 3 summarizes our network architectures and the
training process.

4.1 Training Data Preparation

Our training process takes as input a set of measured BRDFs where
the kth entry fk is depicted as a sequence of lighting and viewing
directions Xk := (xk,1,xk,2, . . .) and the corresponding BRDF val-
ues Yk := (yk,1,yk,2, . . .) such that yk,i = fk (xk,i ) for all i . In
what follows, we detail how individual xk,i and yk,i are described.

Parameterization of directions. We parameterize the BRDF using
the standard half-difference-angle formulation (θh ,θd ,ϕd ) intro-
duced by Rusinkiewicz [1998] and used by the MERL dataset [Ma-
tusik et al. 2003b]. We note that this coordinate enforces the reci-
procity constraint because f (θh ,θd ,ϕd ) = f (θh ,θd ,ϕd + π ). To
ensure continuity at ϕd = 0 and ϕd = π , we map ϕd onto a circle
by setting t1 = sin(2ϕd ), t2 = cos(2ϕd ) and use x := (θh ,θd , t1, t2)
as the input to our networks.

For BRDFs depicted using other parameterizations, such as the
one used by the EPFL dataset [Dupuy and Jakob 2018], we convert
them into our parameterization using their original sampling pat-
terns. Benefit from the flexibility of the neural process, our method
is capable of taking arbitrary discretization of directions as input
and, therefore, does not require resampling the input BRDFs.

Multi-log remapping of BRDF values. BRDFs can have very high
dynamic ranges, making the learning process overemphasize high-
value regions resulting from specular reflections. To address this
problem, Nielsen et al. [2015] introduced a log-relative mapping
to compress the dynamic range of BRDF data. In practice, a log
transformation log1p(x ) := log(1 + x ) between non-negative real
numbers is commonly used when handling high-dynamic-range
data [Eilertsen et al. 2017; Zhang and Lalonde 2017]. In our case,
we apply the log1p transformation four times to the BRDF val-
ues, which provides slightly better results according to our exper-
iments. Please refer to the supplemental materials for the effect of
varying numbers of log1p transformations.

4.2 Network Architecture

At the core of our NP-based BRDF model depicted in Equations (1–
6) are the functions д and l expressed as neural networks. To adapt
to BRDFs with varying sampling patterns, it is desired for l to take

ALGORITHM 1: Training Algorithm

1: function TrainingProcedure (д,a,h)
2: Initialize
3: while Stopping criterion not reached do

4: for each material k do

5: // Select sequences C and T .
6: Randomly select N pairs C = (xk,i ,yk,i )i=1, ...,N ;
7: Randomly select M pairs T = (xk,i ,yk,i )i=1, ...,M ;
8: // Update distributions in latent space.
9: (μc, Σc) = a(h(X c,Y c));

10: (μt, Σt) = a(h(X t,Y t));
11: // Compute KL loss.
12: eK L = KL(N (μt, Σt) | |N (μc, Σc));
13: // Compute predictions in the set T .
14: Sample (zk ) ∼ N (μt, Σt);
15: (y′i )i=1, ...,M = д(zk ,xk,i )i=1, ...,M ;

16: eL2 =
1
2 (ΔY�

k
Σ−1

errΔYk );

17: (д,a,h)=BackPropagate(eK L ,eL2);
18: end for

19: end while

20: end function

observations with arbitrary patterns, orders, and numbers of en-
tries. To this end, we further decompose l into a non-linear func-
tion h that encodes individual observations and a function a that
aggregates a set of encoded input observations. That is,

l (X ,Y ) = a({h(x j ,yj ) : j = 1, 2, . . .}), (8)

where X := (x1,x2, . . .) and Y := (y1,y2, . . .) is a sequence of
observations of some BRDF f (i.e. yj = f (x j )). Based on the roles
played by h, a, and д, we call h the encoder, a the aggregator, and д
the decoder.

As l needs to take observations with arbitrary orders, a is re-
quired to provide an order-invariant output for all encoded input
observations {h(x j ,yj )}. In practice, we use the mean function to
ensure order-invariance. While other operations, such as max and
sum, are also order-invariant, the mean function usually works bet-
ter. Thanks to the aggregator a, the input BRDF observations to
our model can use arbitrary discretization, making it convenient
to train our model using multiple measured BRDF datasets.

In our practice, all these networks are composed of fully con-

nected (FC) layers. The aggregator network a starts with mean

operation, followed by additional FC layers to introduce more non-
linear mapping and compute the mean and covariance of latent
vectors. To guarantee the non-negative values of BRDF reflectance,
we apply rectified linear units (ReLU) to the last layer of de-
coder’s output. In Figure 3(b), we illustrate the design of each net-
work. Additionally, in Section 6 and 7, we present two alternative
decoder designs for specific applications. We obtain these decoders
via a post-training process based on the learned latent space.

4.3 Training the Networks

The goal of our training process is to maximize the variational pos-
terior given by Equation (2). Unfortunately, this function is difficult
to optimize directly. Instead, we leverage the ELBO [Kingma and

ACM Transactions on Graphics, Vol. 41, No. 2, Article 14. Publication date: November 2021.



A Compact Representation of Measured BRDFs Using Neural Processes • 14:5

Fig. 3. (a) An architectural view of our model for each BRDF using NPs. While training, the encoder h and aggregator a infer the posteriors over BRDF in

function space given sets C and T , and sample a specific latent vector z ′ from it. We then use z ′ to predict the y given XT from the target set T . The model

is trained end-to-end to maximize the evidence lower bound (ELBO), which is the sum of L2 and KL loss. (b) The design of networks used in the model.

Welling 2013] of the variational posterior, which provides a lower
bound of logp (Yk |Xk ) for each k ∈ M :

Eq (zk |Xk ,Yk )[logp (Yk |Xk ,zk )]

− KL
[
q(zk |Xk ,Yk ) ‖ p (zk )

]
, (9)

where KL [· ‖ ·] denotes the Kullback–Leibler divergence between
two distributions.

Consider the prior p (zk ) of all possible BRDFs, about which
we have little knowledge and therefore cannot access it directly.
Moreover, as BRDFs expressing materials with varying albedo

and roughnesses can be very different numerically, using a com-
mon prior p for all zk may lead to unsatisfactory results due to
unnecessary constraints posed by the common prior. To address
this problem, for each k ∈ M , we follow a key idea introduced by
NPs [Garnelo et al. 2018], which is sampling a context set of obser-
vations X c

k
:= (xk, j : j ∈ C ) and Y c

k
:= (yk, j : j ∈ C ) for some

C ⊂ {1, 2, . . .}.
By forcing the posterior p (zk |X c

k
,Y c

k
) of the context set to ap-

proximate the prior p (zk ) of the full set, we obtain a new ELBO:

logp (Yk |Xk ,X
c
k
,Y c

k
) ≥ Eq (zk |Xk ,Yk )[logp (Yk | zk ,Xk )]

− KL
[
q(zk |Xk ,Yk ) ‖ p (zk |X c

k
,Y c

k
)
]
. (10)

In this equation, it is intractable to directly obtain the condi-
tional prior. Thus, the prior is usually approximated with the vari-
ational posterior q(zk |X c

k
,Y c

k
), causing Equation (10) to become

logp (Yk |Xk ,X
c
k
,Y c

k
) ≥ Eq (zk |Xk ,Yk )[logp (Yk | zk ,Xk )]

− KL
[
q(zk |Xk ,Yk ) ‖ q(zk |X c

k
,Y c

k
)
]
. (11)

According to Equations (3) and (6), maximizing Equation (11) fur-
ther boils down to finding д and l that minimize

1

2
Ezk

[
ΔY�

k
Σ−1

errΔYk

]
+ KL

[
N (l (Xk ,Yk )) ‖ N

(
l (X c

k
,Y c

k
)
)]
,

(12)

where ΔYk := (yk, j − д(xk, j ;zk ) : j = 1, 2, . . .) is a function of
zk . At training time, the expected value in Equation (12) is esti-
mated by randomly drawing zk ∼ N (l (Xk ,Yk )) and calculating
ΔY�

k
Σ−1

errΔYk . The KL divergence between two multivariate Gaus-

sians, on the other hand, can be evaluated analytically.
At the high level, the neural process learns to reconstruct Yk

under a regularization that the summary of the context set X c
k
,Y c

k
should be similar to that of the full set. Compared to a zero-
information prior, a posterior of a subset of the target BRDFs can
better reflect the desired behavior. In addition, we train our model
with different sizes of contexts, as we will describe later, which en-
courages our model to be flexible to the size and sampling of the
observations at test time.

Training Algorithm. Figure 3 illustrates the training process for
our encoder, aggregator, and decoder networks by minimizing
Equation (12) using a collection of input observations. Individ-
ual training steps of the training process are further detailed in
Algorithm 1.

At each gradient-descent step, we need to calculate the value of
Equation (12) (summed over all input BRDFs) and the correspond-
ing gradients (with respect to the network weights). For each input
BRDF with observationsXk ,Yk , we evaluate Equation (12) in a sto-
chastic fashion as follows. First, we randomly select the context set
X c

k
⊂ Xk and the corresponding Y c

k
⊂ Yk . Then, all observation

pairs from the context setX c
k
,Y c

k
and the full setXk ,Yk go through

the encoder and the aggregator and yield the distributional param-
eters μc

k
, Σc

k
and μk , Σk , respectively. The KL divergence is then

calculated analytically using these parameters.
To estimate the first term of Equation (12), we randomly draw

zk, j ∼ N (μk , Σk ) for each observation pair xk, j from Xk and yk, j

from Yk . Then, the L2 difference between yk, j and the network
prediction д(xk, j ; zk, j ) is calculated, and the sum of all these L2
differences yields the desired quantity.

As both terms are calculated in a differentiable fashion, the gra-
dients can be easily obtained via automated differentiation.
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Fig. 4. Projections of several categories of measured BRDF to the two di-

mension space spanned by first two principal components from a seven

dimensions latent space. Different categories of materials can be well

distinguished.

Implementation Details. In practice, the overhead of the training
process can be significant when an input BRDF involves a great
number of observation pairs. In this case, we further sample a
target set X t

k
, Y t

k
which satisfies X t

k
⊂ Xk and Y t

k
⊂ Yk . This al-

lows the calculation of the distribution parameters μk , Σk as well
as the expected value in Equation (12) to be approximated by using
the target set X t

k
, Y t

k
instead of the full set.

We train our NPs networks on two measured isotropic BRDF
datasets. The MERL dataset [Matusik et al. 2003a] contains 100 ma-
terials from soft diffuse materials to hard specular materials. Addi-
tionally, we use 51 isotropic BRDFs from the EPFL dataset [Dupuy
and Jakob 2018]. The NPs networks were optimized using the
Adam method [Kingma and Ba 2014] implemented in Tensor-
Flow [Abadi et al. 2016] with a learning rate of 10−4 and a batch
size of 16. The entire training takes approximately 40,000 iterations
in 40 hours on an Nvidia RTX 2080 Ti GPU.

During each training iteration, we choose the size of the
context set from 1 and 16,200 at random and fix the size of the
target set to 16,200. Then, two groups of elements are sampled
correspondingly. Lastly, we set Σerr = 0.2I in Equation (12), with
I being the identity matrix.

5 ANALYSIS OF LEARNED LATENT SPACE

We apply our neural-process-based technique to measured BRDFs
from the MERL [Matusik et al. 2003a] and the EPFL [Dupuy and
Jakob 2018] datasets and obtain a latent space for measured BRDFs.
Our trained encoder networks allow any BRDF (expressed with ob-
servation pairs X and Y ) to be projected into this space.

In the following, we analyze the properties of this learned latent
space via several experiments. We also develop a web-based tool,
which is attached as supplemental material, to visualize this space.

5.1 Dimensionality of the Latent Space

A key parameter to our approach is the dimensionality of the la-
tent space: higher-dimensional spaces generally allow more accu-
rate reconstructions of measured BRDFs. We evaluate the practical
implication of this parameter by training multiple networks sep-
arately that transform BRDF observations to latent vectors with

Fig. 5. Color-coded projections of GGX BRDFs in our latent space. The bot-

tom row of each subplot shows orthographic views of the projections. Each

axis marked as PC represents one principal component. The smooth color

variation in both (a) and (b) indicates that our latent space is well behaved.

dimensionalities ranging from two to seven, respectively. Figure 10
shows the average reconstruction accuracy for each of the latent
spaces. The results demonstrate that our method can provide high-
quality reconstructions using even a 2D latent space. However, too
low dimensionality makes it difficult for the BRDF encoding to gen-
eralize to novel data. This is acceptable for BRDF compression but
can be problematic for other applications such as BRDF interpola-
tion. To make our models useful across multiple applications, we
use a 7D latent space (which introduce negligible storage overhead
compared to the 2D variant) for the rest of the experiments.
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Fig. 6. Reconstruction of novel BRDFs using our NP model. Our model

recovers the shape of highlights accurately, however, the color bias may

degrade the reconstruction quality (the second row).

5.2 Semantics of the Latent Space

Although our model is trained in a fully data-driven fashion with
no semantic input, we do observe the resulting latent spaces to
possess semantically meaningful structures. Figure 4 shows a 2D
embedding of 7D projections of measured BRDFs from our latent
space. In this embedding, we observe that materials with similar
appearance tend to form clusters. For instance,

— The “fabric” BRDFs—those labeled as “fabrics” from the mea-
sured datasets—are located in the upper left;

— The “paper” BRDFs are distributed in the lower left;

— The “metallic-paint-b” BRDFs, which show glare highlights,
lay in the lower middle;

— The “two-layer” BRDFs are placed in the lower right;

— The “metallic-paint-a” BRDFs, which have sharp highlights
without little diffuse reflection, are distributed in the right;

— The “phenolic” and “acrylic” BRDFs exhibiting sharp high-
lights with strong diffuse reflection are located in the upper
right.

To better understand the overall structure of our latent spaces,
we create 16,384 parametric BRDFs each containing a diffuse and
a GGX-based specular component [Walter et al. 2007] (that are
densely sampled from the parameter space) and project the tab-
ulated version of these BRDFs into our 7D latent space. Figure 5
shows a 3D embedding of the projections. Similar to the 2D embed-
ding example in Figure 4, a material’s diffuse reflectivity changes
mostly monotonically along the axis marked as PC2 while the
roughness varies along PC1, demonstrating that our latent space
is smooth and well-behaved.

5.3 Accuracy of Stochastic Reconstruction

As depicted in Section 3, our NP-based method assumes the la-
tent vector zk to be normally distributed with mean μk and co-
variance Σk that are in turn determined (by the aggregator and
encoder networks) given a set of observation pairs Xk , Yk . To re-
construct a BRDF, as expressed in Equation (7), we simply set zk

to the mean μk , making the reconstruction deterministic. The co-
variance Σk , on the other hand, is known to be a good indicator for

reconstruction accuracy. In other words, it is desired for Σk to be
small relative to μk (so that the deterministic reconstruction does
not deviate greatly from the stochastic model with which the net-
works are trained).

To evaluate the implication of approximating zk with its mean
μk , we perform the extract reconstruction by randomly sampling
zk ∼ N (μk , Σk ) and computing the BRDF using Equation (7) with
μk replaced by zk . We repeat this process multiple times for each
BRDF from the MERL and EPRL datasets and record the PSNR of
renderings obtained using the reconstructed BRDFs. We observe
that the variances in PSNR due to the randomness of zk are negli-
gible (below 0.001) for all materials.

5.4 Generalizability

We project and reconstruct the 306 synthesized BRDFs [Serrano
et al. 2016] using our NP model to investigate the generalizability
of our representation. As shown in Figure 6, our representation
can recover the complex shape of specular highlights accurately.
Unfortunately, our representation may struggle with color recov-
ery due to the lack of doucoupling of colors. Please refer to the
supplementary material for more results.

Based on the performance of our model on the novel BRDFs, we
believe that our model can be directly applied to a small amount
of novel data, while fine-tuning can yield better quality. As for the
case of a large amount of novel data, adding novel data into the
training set and retraining is recommended. Retraining on novel
data merely is possible, but MERL and EPFL datasets help to main-
tain the semantics of the latent space.

5.5 Visualization Tool

We develop a proof-of-concept visualization tool that allows the
user to efficiently explore a set of materials characterized by their
latent vectors. After importing these vectors, the user is shown a
2D embedding of the corresponding materials (Figure 7). Since ma-
terials with similar appearance are generally close to each other
in our latent space, our visualization tool can be used for BRDF
recommendation. Specifically, when the user clicks a BRDF in
the latent space, the tool automatically provides a list of neigh-
boring BRDFs based on the distance in the latent space. In Fig-
ure 7, for instance, given a user-selected material, we show the
closest, the fourth closest, and a far away BRDF provided by our
tool. We can see that the visual similarity indeed decreases with
distance.

6 APPLICATION 1: COMPRESSION

We now demonstrate one important application of our Neural-
Process-based representation: compressing measured BRDF
datasets. This can be done by expressing a BRDF using its low-
dimensional (e.g., up to 7D in our case) latent vector (Section 6.1).
Furthermore, as our decoder network д can take more space
compared to one BRDF latent vector, this storage overhead can be-
come significant when storing only a small number of BRDFs. To
reduce the amortized storage overhead, we post-train light-weight
“hypernetworks” to decode small sets of BRDFs (Section 6.2).
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Fig. 7. A visualization of our learned latent space using the developed web-

based visualization tool. The left panel displays a 2D embedding of mea-

sured BRDFs; and the right interface shows renderings of a set of BRDFs

ranked by their latent-space distance from a user-selected BRDF.

Fig. 8. The design of our hyperNet and mainNet. The weights of each FC

layer of the mainNet, which we denote as ẑ , are generated by the hyperNet.

In practice, at decompression time, only ẑ need to be stored, which greatly

reduces overhead.

6.1 Compressing Full Datasets of Measured BRDFs

By default, our NP-based technique encodes measured BRDFs into
a latent space with up to seven dimensions. In this way, the total
storage used to store a collection of n measured BRDFs is

Stotal (n,d ) = Snetwork + nd Sdim, (13)

where Snetwork is the size of the neural network including only
the decoder network д; d denotes the dimensionality of the latent

space; and Sdim indicates the size of each latent vector z ∈ Rd .
In practice, d ranges from two to seven, and our decoder net-

work takes roughly 3.11 MB of storage (when compressed loss-
lessly [Abadi et al. 2016]). The size of our decoder network dom-
inating the total storage Stotal (n,d ) (that is, nd Sdim � Snetwork).
In other words, the dimensionality d hardly affects the total size of
our networks: when going from 2D to 7D, only an extra of 2 KB of
storage is needed.

6.2 Compressing Small Sets of BRDFs

Although our technique provides high compression ratio when
compressing many (e.g., 100) measured BRDFs, the overhead re-
quired for storing our decoder network д can lead to less efficient
compression when handling only a small number of BRDFs.

To address this problem, we propose to decompress using post-
trained hypernetworks [Ha et al. 2016] that are specific to each
BRDF and significantly smaller than the full decoder д. Hypernet-
works (hyperNet) have been widely used in the problem of learn-
ing to learn (e.g., meta-learning), which generates the weights of a
main neural network (mainNet) for a given task.

In our case, we approximate the original decoderд—which takes
as input both the latent vector z and the (incident and outgoing) di-
rections x—using (i) a mainNet that takes the directions x as input
and predicts BRDF values, and (ii) a hyperNet that takes a latent
vector z and generates the weights ẑ of the mainNet. To be precise,

д(x ,z) ≈ mainNet(x ; ẑ), where ẑ = hyperNet(z). (14)

After obtaining the mainNet, the hyperNet can be discarded, and
we only need to generate the mainNet’s weights ẑ once per BRDF
(given its latent vector z). Figure 8 shows the architectural details
of our hyperNet and mainNet. Both of them are composed of FC
layers, and the weights ẑ of the mainNet’s FC layers are computed
by the hyperNet.

We compute hypernetworks by post-training them in the 7D la-
tent space obtained from measured BRDFs through NPs. To this
end, we first randomly sample z from the latent space as input,
and then train the networks by supervising the BRDF value out-
put from the original decoder g. The entire training process is per-
formed using the Adam method [Kingma and Ba 2014] in Tensor-
Flow [Abadi et al. 2016] with a learning rate of 10−4 and a batch size
of 16. Similar to the training of our NP model, we randomly sample
directions for each material in a batch rather than computing from
all directions. This saves the cost of a single batch (increases the
batch size) and improves stability. Hypernetworks are trained for
approximately 60000 iterations over the course of 20 hours on an
Nvidia RTX 2080 Ti GPU.

Leveraging the learned hypernetworks, we can achieve a very
high compression ratio for individual BRDF. Note that the architec-
ture of our mainNet is fixed and, thus, does not need to be stored
per BRDF. Instead, we only need to store the weights ẑ of the main-

Net, which takes 9 KB per BRDF in our experiments.

6.3 Results

To evaluate the visual quality of our compressed BRDFs, we ren-
der a sphere using the reconstructed BRDFs under three environ-
mental illuminations (St. Peter’s Basilica, Uffizi, and Grace). We
use PSNR to quantize the difference between renderings using re-
constructed BRDFs and the original (tabulated) ones. The average
PSNR is computed from all MERL BRDFs.

We compare our approach with several state-of-the-art BRDF
compression approaches [Bagher et al. 2016; Hu et al. 2020; Nielsen
et al. 2015; Sun et al. 2018] on the MERL dataset. Figure 9 shows
per-BRDF PSNRs, and Figure 10 provides average PSNRs as well
as storage comparisons.

Compared to the previous methods, our technique produces
higher-quality results for most BRDFs in the MERL dataset—even
with a two-dimensional latent space, our method performs on par
with or better than the state-of-the-art approaches.1 Furthermore,

1As discussed in Section 5.1, latent spaces with higher dimensionalities can be bet-
ter suited for applications beyond BRDF compression as they are generally better-
behaved and generalize more easily to BRDFs beyond the training datasets.
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Fig. 9. Reconstruction accuracy measured in PSNR of rendered images. Our model (using a 7D latent space) provides better accuracy than other methods

in most cases.

in these experiments, our model is trained using both MERL and
EPFL datasets. We expect training with only the MERL dataset to
further improve the performance of our method.

As shown in Figure 10, previous PCA-based compression ap-
proaches [Matusik et al. 2003b; Nielsen et al. 2015] require
33 MB per basis. The tensor decomposition approach [Bilgili et al.
2011] requires more than 7 MB for 100 MERL BRDFs. The non-
parametric factor model [Bagher et al. 2016], another state-of-the-
art method, requires only 3.2 KB per BRDF. However, the quality
of reconstructed BRDFs is limited by the functional structure of
the microfacet model and cannot be easily improved even with ad-
ditional storage.

The recent learning-based approach by Hu et al. [2020] requires
more than 11 MB to store their decoder. In contrast, the total size
of our representation for the MERL dataset is only 3.10 MB. By
using hypernetworks to compress individual BRDFs, the storage
size can further reduce to 9 KB per BRDF, which is comparable to
the work by Bagher et al. [2016]. Although the PSNR value has
also reduced to 48.98, the decoder network (i.e., our mainNet) is
much lighter weighted compared to the original decoder д and,
thus, has the advantage of being much less expensive to store and
evaluate. In our implementation with TensorRT [Vanholder 2016],
it takes 74 ms to decompress a full BRDF (with 180 × 90 × 90
entries) using the original decoder and 3.2 ms to decode the same
table using the hypernetworks on an Nvidia RTX 2080 Ti graphics
card.

In Figure 11, we show renderings of a few reconstructed BRDFs.
Compared with previous methods [Bagher et al. 2016; Hu et al.
2020; Sun et al. 2018], our method is more versatile and capable

of accurately recovering the complex shapes and colors of specu-
lar highlights as well as strong Fresnel reflections. Although there
is a small loss of reconstruction quality by using hypernetworks
for compression, our reconstructions still well resemble the refer-
ences. Please refer to the supplementary file for more comparisons
of different methods.

We further train our NP model on multiple datasets with
different resolutions to investigate the impact of data resolution.
Specifically, we uniformly remove a certain percentage of entries
from each BRDF (with 180×90×90 entries). Then we train our NP
model on these filtered BRDFs using the same training settings
as the original NP model. Table 1 provides average PSNRs of the
full-resolution reconstruction at five training resolution settings.
Our approach does not introduce a significant quality degradation
when 60.3% of entries are filtered out. Even with 90% of entries
removed, our approach is still on par with other state-of-the-art
methods.

To evaluate the impact of using our hypernetworks on BRDF
interpolation, we randomly select a few pairs of MERL BRDFs
and interpolate them using both the original decoder and the
hypernetworks. The results demonstrate that our hypernetworks
predict interpolated materials similar to our original NP model, as
shown in Figure 12.

7 APPLICATION 2: BRDF EDITING

Besides compressing measured BRDFs (Section 5), our learned
latent space also allows efficient BRDF editing and interpolation.
To demonstrate this, we develop a proof-of-concept interac-
tive BRDF editing tool using GPU-based path tracing. In what
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Fig. 10. Comparisons with prior methods [Bagher et al. 2016; Hu et al.

2020; Nielsen et al. 2015; Sun et al. 2018].

Table 1. Average PSNRs of the Full-resolution

BRDFs Reconstructed by our NP Models

Trained at Five Training Resolution Settings

Entries Filter Ratio Avg. PSNR

(180, 90, 90) 0.0% 56.20

(160, 80, 80) 29.8% 53.78

(133, 66, 66) 60.3% 53.28

(83, 42, 42) 90.0% 48.64

(18, 9, 9) 99.9% 41.83

follows, we first introduce an importance sampling technique
specifically developed upon our network-based representation.
Then, we show rendered results generated by our tool for BRDF
interpolation and exploration.

7.1 BRDF Importance Sampling

Importance sampling is crucial for fast convergence of Monte
Carlo rendering. To render our Neural-Process-based BRDFs inter-
actively, our goal is to develop an importance sampling technique
that requires minimal preprocessing. In other words, methods re-
lying on BRDF fitting/decomposition or building summed-area ta-
bles should be avoided.

Fig. 11. Comparison with the PCA model [Sun et al. 2018] and factor-

ization approach [Bagher et al. 2016]. Our models (both of the original

NP-based model and the hypernetwork model) can accurately recover the

color (first column), glossy shape (second column), and the Fresnel effect

(third column) of measured BRDFs.

To this end, we leverage Non-linear Independent Compo-

nents Estimation (NICE) [Dinh et al. 2014, 2016], which allows
learning a non-linear deterministic transformation between the
target distribution and an easily modeled factorized distribution.
In order to maintain the ability to learn complex non-linear trans-
formations, a composition of simple non-linear building blocks is
usually employed

T = TM−1 ◦ · · · ◦T0, (15)

where, for 0 ≤ i < M ,Ti , typically referred to as a coupling layer, is
a specialized network-based bijective transformation, whose Jaco-
bian determinant and inverse transform are easy to compute. Un-
der this framework, to importance sampley with some target PDF,
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Fig. 12. Difference between interpolations generated with our original

model and hypernetworks. The first two rows show the two materials be-

ing interpolated, and the rows below show interpolation results.

one can first draw x ∼ px from the simple factorized distribution,
and then set y = T−1 (x ). In this case, the PDF of y computed via
the change-of-variables formula, py (y) = px (T (y)) | det(DT ) (y) |,
should approximately equal the target PDF whenT is well learned,
where det(DT ) (y) denotes the Jacobian determinant of T at y.

In our case, we normalize the (cosine-weighted) BRDF2 to get
the target PDF:

p (ωi;ωo,z) =
f (ωi,ωo;z) cos(θi )∫

H2 f (ωi,ωo;z) cos(θi ) dωi

. (16)

We use NICE to efficiently importance sample the incident direc-
tion ωi given any outgoing direction ωo and BRDF latent vector z.

Figure 13 shows the architecture of our two-layer NICE. In prac-
tice, we importance sample the halfway vector direction instead of
the incident direction. Given inputs including the zenith angle θo

of the outgoing directionωo, the BRDF latent vector z, and random
samples x drawn uniformly from [0, 1)2, the network generates
halfway vector samples from the learned distribution. Benefit from
the powerful expressive capacity of the coupling transform mod-
ule and the continuity of our latent space, the network works well

2To be precise, we obtain the target PDF by normalizing BRDF luminance.

Fig. 13. The two-layer NICE used to importance sample our NP-based

BRDFs. We use the same Coupling Transform as Müller et al. [2019]. The

input x = (x1, x2) is a 2D random variable distributed uniformly in [0, 1)2.

The output ωh = (θh, ϕho ) represents the half-vector sampled from the

learned distribution, where ϕho is the azimuth angle relative to the outgo-

ing direction. Ji is the logarithmic Jacobian determinant of the coupling

layer Ti ; θo , θh , ϕho are normalized to between 0 and 1.

with a small number of parameters. Our NICE network requires
roughly 37 KB of storage and takes 8 ms to generate 512×512 sam-
ples using TensorRT [Vanholder 2016] on an Nvidia RTX 2080 Ti
GPU.

We also employ post-training to obtain T 0 and T 1 from the 7D
latent space learned from NPs. Similar to our handling of the hy-
pernetworks discussed in Section 6, we first randomly sample z
from the latent space as input. Next, we sample one θo and a set
of random directions from the upper hemisphere for each BRDF in
a batch, and then train the network by minimizing the Kullback–
Leibler (KL) Divergence [Müller et al. 2019]. Thanks to the small
scale of the networks involved, the training takes two hours to con-
verge (using a configuration similar to that of the hypernetworks).

We demonstrate the effectiveness of our NICE-based im-
portance sampling by comparing renderings of MERL BRDFs
under environmental illuminations with three types of sam-
pling methods: basic cosine-weighted, GGX-based introduced by
Sun et al. [2018] (using two lobes), and our technique. As shown
in Figure 14, our method produces the best rendering quality un-
der equal samples. In addition, our NICE-based sampling performs
equally well on the interpolated BRDFs, which we show in Fig-
ure 15. Please refer to the supplemental material for more results.

7.2 BRDF Interpolation and Editing

Our BRDF editing tool allows the user to interactively edit the
BRDF of an object in two ways. First, two BRDFs can be inter-
polated by linearly mixing their corresponding latent vectors. As
demonstrated in Section 5, materials with similar appearance are
typically located close to each other in our latent space. Figure 16
shows two interpolation results, where our interpolation allows
the shapes of specular highlights and the strength of diffuse reflec-
tions to both vary smoothly.

Second, by leveraging the semantically meaningful structure of
our latent space, when editing a BRDF, our tool allows the explo-
ration of its neighborhood by moving along “trait vectors”. We use
the Support Vector Machine (SVM) in a similar fashion as in
prior work [Matusik et al. 2003a] to obtain semantic traits. Specif-
ically, we label each BRDF using 13 perceptual traits proposed by
Serrano et al. [2016] including rubber, metallic, fabric, ceramic, soft,
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Fig. 14. Renderings of MERL BRDFs using varying importance sampling

methods. Compared with cosine-weighted sampling, our approach pro-

duces significantly less noise under equal samples. Furthermore, our

approach performs slightly better than the GGX-based sampling tech-

nique [Heitz 2017] without the need of per-BRDF parameter fitting.

Fig. 15. Renderings of interpolated BRDFs using varying importance sam-

pling methods. Our method significantly outperforms cosine-weighted

sampling. We do not include Sun’s GGX-based method in this example as

it requires per-BRDF fitting and is not well suited for interactive rendering

of interpolated BRDFs.

hard, matte, glossy, bright, rough, strength of reflections, sharpness

of reflections, and tint of reflections. For each trait, we compute
a hyperplane in our latent space that separates BRDFs with and
without the trait. Then, we move along the normal direction of
this plane, which we name the trait vector, and observe how mate-
rial appearance changes. We further project trait vectors into a 2D
space spanned by the first two principal components of our 7D la-
tent space. As shown in Figure 17, despite being projected from our
7D latent space to a 2D space, the arrangement of these trait vec-
tors remains semantically meaningful. For example, as most metal-

lic materials are glossy, the corresponding trait vectors are well
aligned. As for glossy and fabric, which generally contradict each
other, the trait vectors point to approximately opposite directions.

Figure 18 shows renderings generated using BRDFs obtained by
moving along the five trait vectors. The leftmost and rightmost

Fig. 16. Interpolation between two measured BRDFs using our represen-

tations. For each BRDF, we visualize a slice with a fixed viewing direction

(marked in red). As can be seen, such an interpolation allows the shapes

of specular highlights and the strength of diffuse reflections to vary

smoothly.

images are rendered using BRDFs at, respectively, the start and
end points of trait vector shown in Figure 17. Please see the sup-
plementary video for more BRDF editing results.

8 DISCUSSION AND CONCLUSION

8.1 Limitations and Future Work

Extrapolation in the latent space. The results from Section 5 have
demonstrated that our learned latent space is useful for not only
high-quality compression of measured BRDFs but also the inter-
polation of such BRDFs. However, extrapolated BRDFs that are far
away from any training BRDF in the latent space may not preserve
any traits of those BRDFs. This is mainly because our key encod-
ing and decoding networks are trained to optimize reconstruction
accuracy and may behave poorly for unseen BRDFs that are very
different from those used for training. In Figure 19, we show an
example of such extrapolated BRDFs.

Physical plausibility. When developing our technique, we made
several design choices to preserve the physical plausibility of the
learned BRDFs: we use the half-difference-angle parameteriza-
tion to enforce reciprocity and employ the rectified linear units

(ReLU) at the last layer of the decoder to guarantee non-negativity.
On the other hand, similar to most data-driven approaches, it is
challenging to theoretically guarantee the conservation of energy
through neural networks. In our experiments, we observed that
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Fig. 17. Projections of trait vectors learned by SVM into the PCA space of

our 7D embedding.

the optimization of Equation (9) inherently retains high accuracy
of reconstructed BRDFs on observed data as well as preserves the
traits of BRDFs in interpolation. We did not observe any interpo-
lated BRDFs to violate energy conservation. To further illustrate
this, we compute the maximum reflected ratio of the interpolated
BRDFs in the latent space:

a(z) = max

{∫
Ω
f (ωi,ωo;z) (ωi,n)dωi

�����
ωo ∈ Ω

}
, (17)

which should be in [0, 1] for the BRDF to conserve energy. This is
mostly the case in our experiments, which we show in Figure 20,
except for extrapolated BRDFs that are located in the top-right cor-
ner of the space and far away from all training samples. We con-
sider a new network architecture that guarantees the energy con-
servation an interesting future topic.

Colored materials. As we train our Neural-Process-based mod-
els with RGB colors baked in, our latent space does not guaran-
tee any separation of diffuse and/or specular albedo, especially at
low dimensionalities. The absence of color separation makes our
latent space representation color-dependent, which can bring trou-
ble when editing: the color of the interpolated material may not
vary as expected, as shown in Figure 21. Also, when applying our
model to novel materials, the color bias causes a decrease in recon-
struction quality, which limits the generalizability of our represen-
tation. We plan to test on more exotic BRDFs in the future, and it
will be an interesting topic to explore a new network architecture
that decomposes albedos from full reflectance profiles.

8.2 Conclusion

We presented a new representation for measured BRDFs by
leveraging the NPs. Treating the input BRDFs as continuous
functions rather than discrete matrices or tensors, our technique
learns a latent space by allowing complex and non-linear relations,
represented with neural networks, between measured BRDFs and

Fig. 18. Visualization of the changes in appearance along each trait vector

in Figure 17.

Fig. 19. Extrapolated BRDFs: The extrapolation path is shown on the

right, and three renderings of extrapolated BRDFs are shown at left. When

the BRDFs are far away from all training examples in the latent space, the

extrapolated BRDF might not preserve any traits of the training ones.

their latent representations. This function-level flexibility offers
combined compactness and accuracy that has not been achieved
before.

We evaluated the effectiveness of our method by providing
detailed statistics and comparing to state-of-the-art methods.
Furthermore, we demonstrated the practical usefulness of our
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Fig. 20. Visualization of the maximum reflected ratio a (z ) of interpolated

and extrapolated BRDFs projected into a 2D space spanned by the first

two principal components from our 7D latent space. We can see that a (z )
is within [0, 1] for the interpolated BRDFs.

Fig. 21. Interpolation between white-fabric2 and paper-yellow. Since our

latent space is color-dependent, the color of the interpolated material may

change suddenly and not as expected.

technique via two applications. Leveraging our latent represen-
tation, measured BRDF can be compressed compactly. Using our
post-trained hypernetworks, even a small number of BRDFs can
be compressed with low storage overhead. We also developed an
interactive editing tool integrated with a post-trained importance
sampling neural network.
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