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1 Weights of Light Transport Paths

Given a light subpath Z; and a camera subpath Z, with n; and n, Vertlces respectively, our bidi-
rectional estimator combines 2n;n, estimators of the form f(yii))/ps s (ys / ) with s € {1,2,...,n;},
t € {1,2,...,n,}, and u € {0,1} via the multiple importance sampling (MIS) framework. This

yields a combined estimator:
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where the weight fwg?, when using the balanced heuristics [Veach 1997], is given by
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for any path g, with (s 4 t) vertices.

Notice that, compared to standard bidirectional path tracing that combines n;n, estimators, our
position-free formulation offers twice the number of estimators since the direction connecting two
depths is not unique (see Eq. (16) of the main paper).

2 Efficient Weight Computation

Computing Egs. (1) and (2) for all s and ¢ naively has a time complexity of O(n;n,(n; +mn,)) and is
too slow to be practical. We now present our method that runs in O(n;n,) time. Our approach is
conceptually similar to Veach’s method for standard BDPT but differs in the exact mathematical
form due to our position-free path formulation (see §4 for the paper).



Let §st = (do, z1,d1, ..., 2n,dy) with n = s+ ¢. For all ;¢ € {1,2,...,n}, define
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which denote the probability for constructing two subpaths containing the first s’ and last ¢’ vertices
of 7, respectively. Then, for all v/, s’ and t/, it holds that
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where
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It follows that
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Note that, for any s’ < s, we have
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it is easy to verify that PS(O)

depends only on depths zy and directions dy with s’ < s, which are
all from the subpath Z;. Further, PLS,O ) remains constant for all paths g5 ¢ with s > s’. This allows
us to precompute PS(O) using z; for s = 1,2, .. . To this end, P( )( ) can be efficiently evaluated

using the following relation:
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Using Eq. (11), we can compute pY (z;) for s =1,2,...,n; in O(n;) time.



Similarly, for all ¥ < ¢, we have
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where Pt(l) only depends on Z, can be computed in O(n,) time.

With both PS(O) and Pt(l) precomputed, Eq. (2) becomes
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which can be computed in constant time. This leads to a full bidirectional estimator with time
complexity O(n;n,).



