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Figure 1: (a) Capture setup. Our method takes as input: multi-view photos (100 captured and 12 shown for this example) of an object (b) and
a rough initial model with its geometry obtained using standard methods (c). Then, a novel analysis-by-synthesis optimization is performed
to refine the model’s shape and reflectance in a unified fashion, yielding a high-quality 3D model (d). We show in (e) a re-rendering of the
result under environmental lighting.

Abstract

Reconstructing the shape and appearance of real-world objects using measured 2D images has been a long-standing inverse
rendering problem. In this paper, we introduce a new analysis-by-synthesis technique capable of producing high-quality recon-
structions through robust coarse-to-fine optimization and physics-based differentiable rendering.

Unlike most previous methods that handle geometry and reflectance largely separately, our method unifies the optimization of
both by leveraging image gradients with respect to both object reflectance and geometry. To obtain physically accurate gradient
estimates, we develop a new GPU-based Monte Carlo differentiable renderer leveraging recent advances in differentiable
rendering theory to offer unbiased gradients while enjoying better performance than existing tools like PyTorch3D [RRN"20]
and redner [[LADLI8]. To further improve robustness, we utilize several shape and material priors as well as a coarse-to-fine
optimization strategy to reconstruct geometry. Using both synthetic and real input images, we demonstrate that our technique
can produce reconstructions with higher quality than previous methods.

1. Introduction dependently. For instance, many techniques based on multiview-

stereo (MVS) [GHP08, SSWK 13, TFG™ 13, NLW " 16, AWL* 15,
Reconstructing the shape and appearance of real-world objects HSL‘: 17, RPG16, RRFG17] and time-of-flight imaging [NIH" 11,
from 2D images has been a long-standing problem in computer [KH" 11] have been introduced for the reconstruction of 3D shapes.
vision and graphics. Previously, the acquisition of object geome- Although these methods can also provide rough estimations of sur-
try and (spatially varying) reflectance has been studied largely in- face reflectance, they usually rely on the assumption of simple
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(e.g., diffuse-dominated) reflectance and can produce unsatisfac-
tory results for glossy objects. On the other hand, previous ap-
proaches that specialized at recovering an object’s spatially varying
reflectance [ , , ] typically require object
geometries to be predetermined, limiting their practical usage for
many applications where such information is unavailable.

Recently, great progress has been made in the area of Monte
Carlo differentiable rendering. On the other hand, how this pow-
erful tool can be applied to solve practical 3D reconstruction
problems—a main application area of differentiable rendering—
has remained largely overlooked. Prior works (e.g., [ D
have mostly relied on alternative Poisson reconstruction steps dur-
ing the optimization, leading to suboptimal geometry quality. In-
stead, by leveraging edge sampling that provides unbiased gra-
dients of mesh vertex positions, we optimize object shape and
SVBRDF in a unified fashion, achieving state-of-the-art recon-
struction quality.

In this paper, we demonstrate that detailed geometry and spa-
tially varying reflectance of a real-world object can be recovered
using a unified analysis-by-synthesis framework. To this end, we
apply gradient-based optimization of the rendering loss (i.e., the
difference between rendered and target images) that are affected by
both object geometry and reflectance. Although such gradients with
respect to appearance are relatively easy to compute, the geometric
gradients are known to be much more challenging to compute and,
therefore, have been mostly approximated in the past using tech-
niques like soft rasterization [ ] in computer vision. We,
on the other hand, leverage recent advances in physics-based dif-
ferentiable rendering to obtain unbiased and consistent geometric
gradients that are crucial for obtaining high-quality reconstructions.

Concretely, our contributions include:

e A Monte Carlo differentiable renderer specialized for collocated
configurations. Utilizing edge sampling [ ], our renderer
produces unbiased and consistent gradient estimates.

e A new analysis-by-synthesis pipeline that enables high-quality
reconstruction of spatially varying reflectance and, more impor-
tantly, mesh-based object geometry.

e A coarse-to-fine scheme as well as geometry and reflectance pri-
ors for ensuring robust reconstructions.

e Thorough validations and evaluations of individual steps that
come together allowing practical and high-quality 3D recon-
struction using inexpensive handheld acquisition setups, which
benefits applications in many areas like graphics and AR/VR.

We demonstrate the effectiveness of our technique via several syn-
thetic and real examples.

2. Related work

Shape reconstruction. Reconstructing object geometry has been
a long-standing problem in computer vision.

Multi-view Stereo (MVS) recovers the 3D geometry of suffi-
ciently textured objects using multiple images of an object by
matching feature correspondences across views and optimizing
photo-consistency (e.g., [ s s s D.

Shape from Shading (SfS) relates surface normals to image in-
tensities [ N R R R R 1.
Unfortunately, these methods have difficulties handling illumina-
tion changes, non-diffuse reflectance, and textureless surfaces.

Photometric Stereo (PS) takes three or more images captured
with a static camera and varying illumination or object pose, and
directly estimate surface normals from measurements [ s

s R s N s ]. These meth-
ods typically do not recover reflectance properties beyond diffuse
albedo.

Reflectance reconstruction. Real-world objects exhibit richly
diverse reflectance that can be described with spatially-varying
bidirectional reflectance distribution functions (SVBRDFs).

Traditional SVBRDF acquisition techniques rely on dense in-
put images measured using light stages or gantry (e.g, [ s
, , , , ) D. To
democratize the acquisition, some recent works exploit the struc-
ture (e.g., sparsity) of SVBRDF parameter spaces to allow re-
constructions using fewer input images (e.g., [ , X
s s s ]). Additionally, a few recent
works have been introduced to produce plausible SVBRDF es-
timations for flat objects using a small number of input images
(eg, [ , , . , , D.
Despite their ease of use, these techniques cannot be easily gener-
alized to handle more complex shapes.

Joint estimation of shape and reflectance. Several prior works
jointly estimate object shape and reflectance. Higo et al. [ ]
presented a plane-sweeping method for albedo, normal and depth
estimation. Xia et al. [ ] optimized an apparent normal
field with corresponding reflectance. Nam et al. [ ] pro-
posed a technique that alternates between material-, normal-, and
geometry-optimization stages. Schmitt et al. [ ] perform
joint estimation using a hand-held sensor rig with and 12 point light
sources. Bi et al. [ ] use six images and optimize object ge-
ometry and reflectance in two separate stages.

All these methods either rely on MVS for geometry reconstruc-
tion or perform alternative optimization of shape and reflectance,
offering little to no guarantee on qualities of the reconstruction re-
sults. We, in contrast, formulate the problem as a unified analysis-
by-synthesis optimization, ensuring locally optimal results.

Differentiable rendering of meshes. We now briefly review
differentiable rendering techniques closely related to our work.
For a more comprehensive summary, please see the survey by
Kato et al. [ 1.

Specialized differentiable renderers have long existed in com-
puter graphics and vision [ R s s s
]. Recently, several general-purpose ones [ ,
] have been developed.

A key technical challenge in differentiable rendering is to es-
timate gradients with respect to object geometry (e.g., positions
of mesh vertices). To this end, several approximated methods
(e.g., [ , s 1) have been proposed. Unfortu-
nately, inaccuracies introduced by these techniques can lead to
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degraded result quality. On the contrary, Monte Carlo edge sam-
pling [ s 1, which we use for our differentiable ren-
derer, provides unbiased gradient estimates capable of producing
higher-quality reconstructions.

3. Our method

We formulate the problem of joint estimation of object geometry
and reflectance as an analysis-by-synthesis (aka. inverse-rendering)
optimization. Let & be some vector that depicts both the geometry
and the reflectance of a real-world object. Taking as input a set of
images 7 of this object, we estimate & by minimizing a predefined
loss L:

" = argming £(Z(§),; 1), (0

where Z (&) are a set of renderings of the object generated using the
geometry and reflectance provided by &. We further allow the loss
L to directly depend on the parameters & for regularization.

Acquisition setup. Similar to recent works on reflectance cap-
ture [ s s s R R s

s ], we utilize an acquisition setup where the ob-
ject is illuminated with a point light collocated with the camera.
This collocated configuration significantly simplifies both forward
and differentiable rendering processes, allowing the analysis-by-
synthesis problem to be solved efficiently. Common collocated
configurations include a smartphone’s flash and camera as well as
a consumer-grade RGBD sensor mounted with an LED light.

Overview of our method. Efficiently solving the optimization
of Eq. (1) requires computing gradient d£/d¢ of the loss £ with
respect to the geometry and reflectance parameters &. According to
the chain rule, we know that

dC oLdZI dL )
dE " oL dE T 9E’ @
where 9£/97 and 9£/a¢ can be computed using automatic differen-
tiation [ ]. Further, estimating gradients dZ/d¢ of rendered
images requires performing differentiable rendering. Despite be-
ing relatively easy when the parameters & only capture reflectance,
differentiating the rendering function Z becomes much more chal-
lenging when § also controls object geometry [ ]. To this
end, we develop a new differentiable renderer that is specific to our
acquisition setup and provides unbiased gradient estimates.

In the rest of this section, we provide a detailed description of
our technique that solves the analysis-by-synthesis optimization (1)
in an efficient and robust fashion. In §3.1, we detail our forward-
rendering model and explain how it can be differentiated. In §3.2,
we discuss our choice of the loss £ and optimization strategy.

3.1. Forward and differentiable rendering

In what follows, we describe (i) our representation of object geom-
etry and reflectance; and (ii) how we render these representations
in a differentiable fashion.
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Figure 2: Differentiable rendering: (a) To properly differentiate
the intensity I of a pixel P; (illustrated as red squares) with respect
to object geometry, a boundary integral over AP (illustrated as the
orange curve) needs to be calculated. (b) We perform Monte Carlo
edge sampling [ , ] by (i) sampling points (illus-
trated as small discs) from pre-computed discontinuity curves AP,
and (ii) accumulating their contributions in the corresponding pix-
els (e.g., the orange samples contribute to the pixel P;).

Object geometry and reflectance. We express object geome-
tries using standard triangle meshes. Compared to other represen-
tations that are popular in 3D reconstruction, such as SDF vol-
umes [ R N ], occupancy networks [ ]
or sphere-based clouds [ ], triangle meshes can be efficiently
rendered and edited with many 3D digital content creation tools.
Further, as a widely adopted format, triangle meshes can be easily
imported into numerous applications in computer graphics, vision,
and augmented/virtual reality (AR/VR).

One of the biggest challenges when using meshes for 3D recon-
struction is that topological changes are difficult. We show in the
following sections that this can be addressed by using reasonable
initial geometries and a coarse-to-fine optimization process.

To depict an object’s spatially varying reflectance, we use the
Disney BRDF [ ], a parametric model offering a good bal-
ance between simplicity and flexibility. This model has also been
used by many prior works (e.g., [ , , 1). Us-
ing this BRDF model, the spatially varying reflectance of an object
is described using three 2D texture maps specifying, respectively,
diffuse albedo aq4, specular albedo as, surface roughness a. And
surface normals n are computed from updated mesh vertex posi-
tions at every step. Thanks to the efficiency of our system (which
we will present in the following), we directly use fine meshes to
express detailed geometries and do not rely on approximations like
bump/normal mapping.

Forward rendering. Given a virtual object depicted using pa-
rameters &, we render one-bounce reflection (aka. direct illumi-
nation) of the object. Specifically, assume the point light and the
camera are collocated at some 0 € R®. Then, the intensity /; of the
J-pixel is given by an area integral over the pixel’s footprint P;,
which is typically a square on the image plane:

ﬁo—>y—>o)
i dA(x), 3
b= o a4 @

=:1(x)
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Figure 3: Comparison with SoftRas [I.L.C1.19], PyTorch3D [RRN"20], Mitsuba 2 [NDV7J19] and Nvdiffrast [LHK"20]. We render all
reconstructed geometries using Phong shading and visualize depth errors (wrt. the ground-truth geometry). Initialized with the same mesh
(shown in the left column), optimizations using gradients obtained with SoftRas and PyTorch3D tend to converge to low-quality results
due to gradient inaccuracies caused by soft rasterization. Mitsuba 2, a ray-tracing-based system, also produces visible artifacts due to
biased gradients resulting from an approximated reparameterization [1.HJ]9]. Nvdiffrast is using multisample analytic antialiasing method
to provide reliable visibility gradients, which yields better optimization result overall. When using gradients generated with our differentiable
renderer, optimizations under identical configurations produce results closely resembling the targets. The number below each result indicates
the average point-to-mesh distance capturing the Euclidean accuracy [JDV" 14] of the reconstructed geometry (normalized to have a unit

bounding box).

where y is the intersection between the object geometry M and a
ray that originates at 0 and passes through x on the image plane.
Further, I denotes the intensity of the point light; fi(0 —y — 0)
indicates the cosine-weighted BRDF at y (evaluated with both the
incident and the outgoing directions pointing toward 0); and A is the
surface-area measure. We note that no visibility check is needed in
Eq. (3) since, under the collocated configuration, any point y € M
visible to the camera must be also visible to the light source.

We estimate Eq. (3) using Monte Carlo integration by uni-
formly sampling N locations Xx,x,...,xy € P; and computing
I~ %):ﬁ-\’:l I(x;) where [ is the integrand defined in Eq. (3).

Differentiable rendering. Computing image gradients dZ/d¢ in
Eq. (2) largely boils down to differentiating pixel intensities Eq. (3)
with respect to &. Although this can sometimes be done by dif-
ferentiating the integrand I—that is, by estimating fp/ (d1/at) dA—

doing so is insufficient when computing gradients with respect to
object geometry (e.g., vertex positions). Consequently, the gra-
dient dZ/d¢ has usually been approximated using soft rasteriza-
tion [LLLLCL.19,RRN"20] or reparameterized integrals [[.HJ19]. Bi-
ased gradient estimates, unfortunately, can reduce the quality of
optimization results, which we will demonstrate in §4.

On the other hand, a few general-purpose unbiased tech-
niques [LLADL18,72WZ" 19] have been introduced recently. Unfor-
tunately, these methods focus on configurations without point light
sources—which is not the case under our collocated configuration.
We, therefore, derive the gradient d/;/d¢ utilizing mathematical tools
used by these works. Specifically, according to Reynolds transport
theorem [Rey03], the gradient involves an interior and a boundary
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Figure 4: Ablation study on our mesh loss of Eq. (9) and coarse-to-fine framework. Using the identical initializations and optimization
settings, we show geometries (rendered under a novel view) optimized with (i) various components of the mesh loss; and (ii) the coarse-to-
fine process disabled. Similar to Figure 3, the number below each result indicates the average point-to-mesh distance.

integrals:

interior
dl;
d*é:ﬁ[ Jp, % (x)dA(x) |+ “

fAPj (n(x’) : %’/) VAI(xl) dé(xl) ] )

where the interior term is simply Eq. (3) with its integrand / dif-
ferentiated. The boundary one, on the contrary, is over curves
APj:= AP NP; with AP comprised of jump discontinuity points
of . In practice, AP consists of image-plane projections of the ob-
ject’s silhouettes. Further, n(x) is the curve normal within the im-
age plane, Al(x) denotes the difference in I across discontinuity
boundaries, and ¢ is the curve-length measure (see Figure 2-a).

Similar to the Monte Carlo estimation of Eq. (3), we estimate the
interior integral in Eq. (4) by uniformly sampling xy,...,xy € P;.
To handle the boundary integral, we precompute the discontinuity
curves AP (as polylines) by projecting the object’s silhouette onto
the image plane at each iteration. At runtime, we draw x},...,x}, €
AP uniformly. Then,

interior

d/;
;| v I g () |+ Q)

~
d§ ~
boundary

W i € )] (n(x) - G ) AL

where |AP| denotes the total length of the discontinuity curves AP,
and 1[-] is the indicator function.

In practice, we estimate gradients of pixel intensities via Eq. (5)
in two rendering passes. In the first pass, we evaluate the interior
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component independently for each pixel. In the second pass, we
evaluate the boundary component for each x/ in parallel and accu-
mulate the results in the corresponding pixel (see Figure 2-b).

3.2. Analysis-by-synthesis optimization

We now present our analysis-by-synthesis optimization pipeline
that minimizes Eq. (1).

Object parameters. As stated in §3.1, we depict object geom-
etry using a triangle mesh (which is comprised of per-vertex posi-
tions p and UV coordinates u as well as per-triangle vertex indices)
and reflectance using three 2D texture maps specifying the object’s
spatially varying diffuse albedo a4, specular albedo as, and surface
roughness «, respectively. In this way, our combined geometry and
reflectance parameters are given by & = (p,u,aq,as, o). Note, we
do not modify the connectivity of the triangle vertices and rely on
additional re-meshing steps, which we will discuss in §3.4, to im-
prove mesh topology.

Loss. A key ingredient in our analysis-by-synthesis optimization
is the loss £. Let Z := (I, I,,...) be a set of images of some object
(with camera location and pose calibrated for each image I;). Then,
our loss takes the form:

L(Z(8),& ) := Lrend(Z(§): I) + Lreg(§), (6)

where Lenq is the rendering loss that measures the difference be-
tween rendered and target object appearances. Specifically, we set

['rend(I(é); -T) = 7“'rend Yk Hq)k(lk(g)) _q)k(ik)”] ) (N

where Aeng > 0 is a user-specified weight, Z(§) :=
(11(8),I(E),...) denotes images rendered using our forward-
rendering model of Eq. (3) with object geometry and reflectance
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Figure 5: Ablation study on our material loss of Eq. (10). Using identical initial reflectance maps and optimization configurations, models
optimized with various components of the material loss neglected are rendered under a novel environmental illumination. On the right of
each reconstruction result, we show the optimized reflectance maps (from top to bottom: diffuse albedo, specular albedo, and roughness).
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Figure 6: Ablation study on number of input images. For each object, we show a novel-view rendering of our reconstruction under environmental lighting,
given varying number of input images. The input images have viewing/lighting positions uniformly sampled around the object.

specified by & (under identical camera configurations as the input
images), and ®; captures pixel-wise post-processing operations
such as tone-mapping and background-removing masking.

We estimate gradients of the rendering loss of Eq. (7) with re-
spect to the object parameters & using our differentiable rendering
method described in §3.1. We will demonstrate in §4.1 that accurate
gradients are crucial to obtain high-quality optimization results.

In Eq. (6), Lreg(§) is a regularization term for improving the
robustness of the optimization, which we will discuss in §3.3. Gra-
dients of this term can be obtained easily using automatic differen-
tiation.

Optimization process. Like any other analysis-by-synthesis
method, our technique takes as input an initial configuration of an
object’s geometry and reflectance. In practice, we initialize object
geometry using MVS or Kinect Fusion. Our technique is capa-
ble of producing high-quality reconstructions using crude initial-
izations (obtained using low-resolution and noisy inputs). For the

reflectance maps, we simply initialize them as constant-valued tex-
tures.

Provided an initial configuration of the object’s geometry and
reflectance, we minimize the loss of Eq. (6) using the Adam algo-
rithm [KB14].

Further, to make the optimization more robust, we leverage a
coarse-to-fine approach that periodically performs remeshing and
upsamples the reflectance-describing textures. We will provide
more details on this process in §3.4.

3.3. Regularization

Using only the rendering loss Lyeng expressed in Eq. (7) can make
the optimization unstable and/or converge to local minima. To ad-
dress this problem, we regularize the optimization by introducing
another loss Lreg that in turn consists of a material 10ss Lmat and a
mesh one L eqh:

Lreg(8) := Linesh (M) 4 Limat(ag, as, &), (3
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(A) INPUT RGB IMG.
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Figure 7: Comparison with COLMAP [S7ZPF16] and Kinect Fusion [NIH" 1] using synthetic inputs. The COLMAP results (c) are gen-
erated using 50 RGB images (a) with exact camera poses; the KF-High (d1) and KF-Low (d2) results are created using 50 ground-truth
depth images (b) and low-resolution noisy ones, respectively. Our method (e), when initialized with KF-Low (d2) and using RGB inputs (a),
produces much more accurate geometries than COLMAP and KF-High. Similar to Figure 3, the numbers indicate average point-to-mesh

distances.

which we will discuss in the following.

Mesh loss. We encourage our optimization to return “smooth”
object geometry by introducing a mesh loss:

['mesh (M) = Llap (M) + Enormal(M) + Eedge (M)7 ©

where the mesh-Laplacian loss Ly, of a mesh with n vertices is
given by Ljgp(M) = klap||LV||2 where V is an n x 3 matrix with
its i-th row storing coordinates of the i-th vertex, and L € R"*" is
the mesh’s Laplacian matrix [NISA06].

Additionally, we use a normal-consistency loss Lpormal tO en-
courage normals of adjacent faces to vary slowly by setting
Luormal (M) 1= Anormar X j[1 — (ni ~nj)]2, where the sum is over
all pairs (i, j) such that the i-th and the j-th triangles share a com-
mon edge, and n; and n; denote the normals of these triangles.

Lastly, we penalize the mesh for having long edges, which usu-
ally yield ill-shaped triangles, by utilizing an edge-length loss
Ledge 1= Aedge (i eiz) 2, where e; denotes the length of the i-th face
edge.

Material loss. Our material loss Lmar regularizes the reflectance
maps representing diffuse albedo aq, specular albedo as, and sur-
face roughness o. Specifically, we set

Lmat(aq, as, o) == Lspec(ag,as) + Lroug (O0), (10)

where Lgspec correlates diffuse and specular albedos [SDR™20]:
assuming nearby pixels with similar diffuse albedos to have
similar specular ones, we set Lspec(ds,ad) := hspec Lp [las[p] —
2
(g aslalupa)/ (Cqmpa)ll1. where pipg = exp(— 15201 -
2
%) is the bilateral weight between pixels with indices
2

p.q <7

Spatially varying surface roughness is known to be challenging
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to optimize even when the object geometry is known [GLD" 19].
To regularize our optimization of surface roughness, we introduce
a smoothness term that measures its total variation: Lroug(at) :=
Aroug X ([otfi+ 1, ] — ol )| + [t j + 1] — el ), where ot ]
indicate the value of the (i, j)-th pixel in the roughness map.

3.4. Improving robustness

As described in §3.2, when minimizing the loss of Eq. (6), we keep
the mesh topology unchanged. This, unfortunately, can severely
limit the flexibility of our optimization of object geometry, making
the result highly sensitive to the quality of the initial mesh. Addi-
tionally, without taking precautions, updating vertex positions can
introduce artifacts (e.g., self intersections) to the mesh that cannot
be easily fixed by later iterations.

To address these problems, we utilize a few extra steps.

Coarse-to-fine optimization. Instead of performing the entire
optimization at a single resolution, we utilize a coarse-to-fine pro-
cess for improved robustness. Similar steps have been taken in
several prior works, although typically limited to either geome-
try [SLS"06,SY 10,KH13,TSG19] or reflectance [DCP™ 14,RPG 16,
HSL*17].

Specifically, we start the optimization by using low-resolution
meshes and reflectance maps. If the input already has high resolu-
tions, we simplify them via remeshing and image downsampling.
Our optimization process then involves multiple stages. During
each stage, we iteratively refine the object geometry and reflectance
with fixed mesh topology. After each stage (except the final one),
we upsample the mesh (using instant meshes [JTPSHI15]) and the
texture maps (using simple bilinear interpolation).

Robust surface evolution. During optimization, if the vertex po-
sitions are updated naively (i.e., using simple gradient-based up-
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Table 1: Rendering performance. We report the rendering cost in
seconds (averaged across 100 times) of each differentiable renderer
in resolution 512 X 512 and 4 samples per pixel on a Titan RTX
graphics card.

SoftRas PyTorch3D Mitsuba 2 Nvdiffrast Redner Ours
Kettle  0.0184 0.0202 0.0877 0.0013  0.1196 0.0143
Maneki  0.0192 0.0224 0.0863 0.0010  0.1029 0.0146
Pig 0.0971 0.0772 0.0913 0.0014  0.1336 0.0263
Kitty 0.0249 0.0334 0.0889 0.0010  0.1190 0.0225

dates with no validation checks), the mesh can have degraded qual-
ity and even become non-manifold (i.e., with artifacts like holes and
self-intersections). Motivated by other optimization-driven mesh
editing algorithms [ , ], we evolve a mesh using a
pipeline implemented in the El Topo library [ ]: Given the ini-
tial positions of a set of vertices with associated displacements, El
Topo moves each vertex along its displacement vector while ensur-
ing no self-intersection is generated.

4. Results

We implement our differentiable renderer (§3.1) in C++ with
CUDA 11 and OptiX 7.1. For vectorized and differentiable com-
putations, we utilize the Enoki library [ ], which has been
demonstrated to be more efficient than generic ones like Tensor-
flow and PyTorch for rendering [ 1.

We implement the rest of our optimization pipeline, including
the loss computations, in PyTorch. We use one set of weights for
our optimizations: A.nq = 1 for the rendering loss of Eq. (7);
(Map; Aedge» Anormat) = (0.1,1,0.01) for the mesh loss of Eq. (9)
and (Aspec, Aroug) = (0.01,0.001) for the material loss of Eq. (10).

In practice, our optimization involves 500-1000 iterations (for
all coarse-to-fine stages) and takes 0.5-2 hours per example (see
the supplement for more details).

4.1. Evaluations and comparisons

Please see the supplemental material for more results.

Comparison with differentiable renderers. Our renderer en-
joys high performance, thanks to its specialized nature (i.e., fo-
cused on the collocated configuration) and the combined efficiency
of RTX ray tracing offered by OptiX and GPU-based differen-
tiable computations by Enoki. As demonstrated in Table 1, our
renderer is faster than SoftRas [ ], PyTorch3D [ 1,
and Mitsuba 2 [ ] without the need to introduce bias to
the gradient estimates. Nvdiffrast [ ] is faster than our sys-
tem but produces approximated gradients. Lastly, compared to Red-
ner [ ], another differentiable renderer that produces unbi-
ased gradients, our renderer offers better performance.

To further demonstrate the importance for having accurate gra-
dients, we conduct a synthetic experiment where the shape of an
object is optimized (with known diffuse reflectance). Using iden-
tical input images, initial configurations, losses, and optimization

settings (e.g., learning rate), we ran multiple optimizations using
Adam [ ] with gradients produced by SoftRas, PyTorch3D,
Mitsuba 2, Nvdiffrast, and our technique, respectively. As shown
in Figure 3, using biased gradients yields various artifacts or blurry
geometries in the optimized results.

Effectiveness of shape optimization. To ensure robustness when
optimizing the shape of an object, our technique utilizes a mesh
loss (§3.3) as well as a coarse-to-fine framework (§3.4). We con-
duct another experiment to evaluate the effectiveness of these steps.
Specifically, we optimize the shape of the pig model using identi-
cal optimization configurations except for (i) having various com-
ponents of the mesh loss turned off; and (ii) not using the coarse-
to-fine framework. As shown in Figure 4, with the mesh Laplacian
loss Lj,p neglected (by setting Ajyp, = 0), the resulting geometry be-
comes “bumpy”’; without the normal and edge-length losses £ ,ormal
and Leqge, the optimized geometry also has artifacts due to sharp
normal changes and ill-shaped triangles. Additionally, without per-
forming the optimization in a coarse-to-fine fashion (by directly
starting with a subdivided version of the initial mesh), the opti-
mization gets stuck in a local optimum (with all losses enabled).

Effectiveness of material loss. Our material loss of Eq. (10) is
important for obtaining clean reflectance maps that generalize well
to novel settings. As shown in Figure 5, without correlating dif-
fuse and specular albedos (by having Aspec = 0), diffuse colors
are “baked” into specular albedo, leading to heavy artifacts un-
der novel environmental illumination. With the roughness smooth-
ness Lroug disabled, the resulting roughness map contains high-
frequency noise that leads to artifacts in rendered specular high-
lights.

Number of input images. We evaluate how the number of input
images affects the reconstruction quality of our method in Figure 6.
Using a small number (e.g., 10) of images, the optimization be-
comes highly under-constrained, making it difficult for our model
to produce accurate appearance under novel viewing conditions.
The accuracy our novel-view renderings improves quickly as the
number of input images increases: With 50 or more input images,
our renderings closely match the groundtruth.

Comparison with previous methods. To further evaluate the
effectiveness of our technique for recovering object geometry,
we compare with several previous methods [ , s

1.

Figure 7 shows comparisons with COLMAP [ ] and
Kinect Fusion [ ] using synthetic inputs. Our technique,
when using crude initial geometries (obtained using Kinect Fusion
with low-resolution and noisy depth images), produces results with
much higher quality than the baselines. COLMAP fails badly for
the kirty example since the object contains insufficient textures for
correspondences to be reliable established.

Additionally, we compare our technique with the work from
Nam et al. [ ] using real inputs (i.e., photographs). As
demonstrated in Figure 8, Nam et al.’s method does not explicitly
optimizes object geometry based on image losses and returns ge-
ometries with heavy artifacts. Our technique, on the other hand, is
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(a) Photo (b) Nam et al. (c) Ours (d) Insets (e) Nam et al. (f) Ours (g) Insets

Figure 8: Comparison with Nam et al. [NLGK]8]: We render the reconstructed object under novel view. Nam et al.’s method produces
bumpy geometry and inaccurate highlights. In contrast, our method produces much cleaner results that closely resemble the real object.

INIT MESH GT (POINT-LIGHT) OURS (POINT-LIGHT) GT (ENV. MAP 1) OURS (ENV. MAP 1) GT (ENV. MAP 2) OURS (ENV. MAP 2)

Figure 9: Reconstruction results using synthetic inputs: We obtain the initial meshes (in the left column) using Kinect Fusion [NIH " 11 ] with
low-resolution (48 x 48) and noisy depths. Our analysis-by-synthesis pipeline successfully recovers both geometric and reflectance details,
producing high-fidelity results under novel viewing and illumination conditions.

much more robust and capable of reproducing the clean geometry 4.2. Reconstruction results

and appearance of the physical model. Figure 9 shows reconstruction results obtained using synthetic in-

put images and rendered under novel views and illuminations.
The initial geometries are obtained using Kinect Fusion with low-
resolution noisy depth inputs. Using 50 input images, our tech-
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nique offers the robustness for recovering both smooth (e.g., the
kitty example) and detailed (e.g., the pig example) geometries and
reflectance.

We show in Figure 10 reconstruction results using as input 100
real photographs per example. The initial geometries are obtained
using COLMAP. Our analysis-by-synthesis technique manages to
accurately recover the detailed geometry and reflectance of each
model.

Please note, in Figures 9 and 10, the detailed geometric struc-
tures (e.g., those in the bell, pig, chime, and buddha examples) fully
emerge from the mesh-based object geometries: no normal or dis-
placement mapping is used.

Lastly, since our reconstructed models use standard mesh-based
representations, they can be used in a broad range of applications
(see Figure 11).

4.3. Discussion and Analysis

We believe the quality gain to be obtained for three main reasons:
First, we use Monte Carlo edge sampling [ ] that provides
accurate gradients with respect to vertex positions, allowing our
method to provide more accurate reconstructions of object geome-
tries (cf. Figure 8 against [ 1); Second, we exploit robust
surface evolution, e.g., elTopo, on top of gradient descent, which
ensures a manifold mesh (i.e., without self-intersections or other
degenerated cases) after every iteration; Third, our coarse-to-fine
strategy and the other regularization terms have come together to
make our pipeline more robust in practice.

Failure cases. Despite our pipeline being robust for most cases
in synthetic/real-world settings, failure cases still exist. Firstly, our
method has difficulties handling complex changes of the mesh
topology—which is a well-known limitation for mesh-based rep-
resentations. Secondly, when modeling object appearance, our
method relies on a simplified version of the Disney BRDF model
only dealing with opaque materials, and thus is limited at recon-
structing sophisticated surface appearances, such as anisotropic re-
flection or subsurface scattering.

5. Conclusion

We introduce a new approach to jointly recover the shape and re-
flectance of real-world objects. At the core of our technique is a
unified analysis-by-synthesis pipeline that iteratively refines object
geometry and reflectance. Our custom Monte Carlo differentiable
renderer enjoys higher performance than many existing tools (such
as SoftRas, PyTorch3D, and Mitsuba 2). More importantly, our ren-
derer produces unbiased geometric gradients that are crucial for
obtaining high-quality reconstructions. To further improve the ro-
bustness of our optimization, we leverage a coarse-to-fine frame-
work regularized using a few geometric and reflectance priors. We
conduct several ablation studies to evaluate the effectiveness of our
differentiable renderer, losses, and optimization strategies.

Limitations and future work. Our technique is specialized to
using a collocated camera and point light. This configuration can

have difficulties in capturing materials exhibiting strong retroreflec-
tion. Generalization to other configurations would be useful in the
future.

To refine mesh topology, our technique relies on remeshing steps
(between coarse-to-fine stages). How topology can be optimized in
a robust and flexible fashion is an important problem for future
investigation.

Lastly, more advanced regularizations of geometry and/or ap-
pearance may enable high-quality reconstructions with fewer input
images.
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