
Robust Derivative Estimation with Walk on Stars
ZIHAN YU, University of California, Irvine, USA
ROHAN SAWHNEY, NVIDIA, USA
BAILEY MILLER, Carnegie Mellon University, USA
LIFAN WU, NVIDIA, USA
SHUANG ZHAO, University of Illinois Urbana-Champaign, USA

(a)

(b)

(c)

(a) (b)

(c) baseline  (equal time)(c)

Fig. 1. Streamlines from a potential flow simulation around marine life of vastly different scales, computed using our Monte Carlo walk on stars solver
for spatial derivatives. Unlike traditional solvers, our method can compute flow gradients at arbitrary resolutions for streamline tracing in local regions of
interest–whether around a single fin (a), multiple dolphins (b), or a full blue whale (c)–without requiring a background grid or a volumetric mesh adapted to
the boundary geometry. Compared to prior walk on stars estimators (bottom right), our method achieves significantly lower error at equal computation time.

Monte Carlo methods based on the walk on spheres (WoS) algorithm offer

a parallel, progressive, and output-sensitive approach for solving partial

differential equations (PDEs) in complex geometric domains. Building on

this foundation, the walk on stars (WoSt) method generalizes WoS to sup-

port mixed Dirichlet, Neumann, and Robin boundary conditions. However,

accurately computing spatial derivatives of PDE solutions remains a major

challenge: existing methods exhibit high variance and bias near the domain

boundary, especially in Neumann-dominated problems. We address this

limitation with a new extension of WoSt specifically designed for deriva-

tive estimation. Our method reformulates the boundary integral equation

(BIE) for Poisson PDEs by directly leveraging the harmonicity of spatial

derivatives. Combined with a tailored random-walk sampling scheme and

an unbiased early termination strategy, we achieve significantly improved

accuracy in derivative estimates near the Neumann boundary. We further

demonstrate the effectiveness of our approach across various tasks, includ-

ing recovering the non-unique solution to a pure Neumann problem with
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reduced bias and variance, constructing divergence-free vector fields, and

optimizing parametrically defined boundaries under PDE constraints.
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1 INTRODUCTION
Recent years have seen significant advances in Monte Carlo solvers

for partial differential equations within the computer graphics com-

munity, particularly those built on Muller’s walk on spheres (WoS)

algorithm [Muller 1956]. WoS offers a compelling alternative to grid-

based methods for solving fundamental PDEs such as the Laplace

equation, especially in geometrically complex domains [Sawhney

and Crane 2020]. Much like Monte Carlo path tracing [Pharr et al.

2023], WoS-based solvers embrace randomness to gain key numeri-

cal advantages such as output-sensitive computation, natural paral-

lelism, and robustness to complex geometry, all without requiring

background grids or the inversion of large linear systems.

Yet a significant limitation remains: current Monte Carlo PDE

solvers are not well-equipped to estimate spatial derivatives of so-

lutions. Gradients are essential for analyzing how solutions vary
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across space, with applications in computing heat flux, voltage and

pressure drops [Sawhney et al. 2023; Bati et al. 2023; Miller et al.

2024b], as well as performing gradient-based optimization of shapes

and materials [Yu et al. 2024; Miller et al. 2024a; Yilmazer et al. 2024].

Unfortunately, derivative estimates are typically much noisier than

solution estimates, especially near boundaries, because the estima-

tor involves a singular kernel. This issue is exacerbated in boundary

value problems (BVPs) dominated by Neumann conditions, where

estimation requires evaluating high-dimensional integrals via long

random walks that repeatedly reflect off the Neumann boundary

and can only terminate on the Dirichlet boundary (Figure 2).

To address these challenges, we extend the walk on stars algo-

rithm [Sawhney et al. 2023; Miller et al. 2024b]–a generalization of

WoS for solving Poisson equations with mixed Dirichlet, Neumann,

and Robin boundary conditions–to enable more robust spatial deriv-

ative estimation. Our method achieves significantly reduced error

compared to existing WoSt-based derivative estimators. Specifically,

the estimators we develop (Section 4):

• maintain bounded variance both near the boundary and within

the domain by carefully handling singular kernels and incorpo-

rating control variates;

• reduce variance in Neumann-dominated problems through early,

unbiased termination of random walks, avoiding the longer tra-

jectories required to estimate the solution itself;

• preserve key strengths ofMonte Carlo PDE solvers, such as output

sensitivity, and parallel and progressive computation.

Beyond improving derivative estimation, our method also unlocks

new capabilities that were previously out of reach for Monte Carlo

solvers, such as:

• A tractable estimator for the non-unique solution to pure Neu-

mann problems, offering substantially lower bias and variance

than prior approaches (Section 6.2).

• Gradient-based optimization of parametrically defined Neumann

boundaries (Section 6.4). Previous Monte Carlo methods have

largely avoided these problems, since computing parameter gradi-

ents requires estimating second-order spatial derivatives involv-

ing hypersingular kernels.

At the core of our method is a key mathematical insight: the

derivative of a harmonic function is itself harmonic. This property

enables us to formulate boundary integral equations for first- and

second-order spatial derivatives of Poisson equations, which we

estimate using the walk on stars framework.

While our method addresses key challenges in derivative estima-

tion, it assumes a smooth boundary and does not handle singular

behavior at sharp concave corners. Future work includes extend-

ing the approach to non-smooth geometries, incorporating Robin

boundary conditions, and generalizing beyond Poisson equations.

2 RELATED WORK
We provide an overview of the Monte Carlo PDE solvers directly

relevant to our method, with a focus on approaches for estimating

spatial derivatives. For a broader introduction toMonte Carlo solvers

for PDEs and a discussion of their numerical tradeoffs relative to

pure Dirichletpure Neumann

mixed Dirichlet & Neumann

interior
point
reflecting
point

ε-shell

...

Fig. 2. Walk on stars solves Poisson equations with mixed Dirichlet and
Neumann boundary conditions by taking independent random walks start-
ing from any given point in the domain (top). Walks reflect off the Neumann
boundary and terminate on the Dirichlet boundary. As a result, WoSt does
not terminate in pure Neumann problems (bottom left), and reduces to
Muller’s walk on spheres in pure Dirichlet problems (bottom right).

grid-based methods, we refer readers to resources by Sawhney et al.

[2025] and Sawhney [2024].

2.1 Monte Carlo Solvers for Partial Differential Equations
Since its introduction to the graphics community [Sawhney and

Crane 2020], the walk on spheres algorithm [Muller 1956] has been

extended far beyond its original application to Laplace equations

with Dirichlet boundary conditions. Recent work has broadened its

applicability to a wider class of linear elliptic equations [Sawhney

et al. 2022; De Lambilly et al. 2023; Sugimoto et al. 2024b; Miller

et al. 2025] and to more general boundary conditions [Sawhney

et al. 2023; Miller et al. 2024b; Sugimoto et al. 2023], along with the

development of several advanced sampling and variance reduction

strategies [Nabizadeh et al. 2021; Qi et al. 2022; Miller et al. 2023;

Bakbouk and Peers 2023; Li et al. 2023, 2024; Huang et al. 2025].

Together, these advancements are now enabling Monte Carlo PDE

solvers to be applied in diverse settings, including heat transfer

[Bati et al. 2023], geometry processing [Sawhney and Crane 2020;

de Goes and Desbrun 2024], fluid simulation [Rioux-Lavoie et al.

2022; Jain et al. 2024; Sugimoto et al. 2024a], differentiable rendering

[Wu et al. 2025], and inverse geometric optimization [Yu et al. 2024;

Miller et al. 2024a; Yilmazer et al. 2024].

Our approach to computing spatial derivatives builds on the walk

on stars method, which solves boundary value problems with arbi-

trary first-order linear boundary conditions [Sawhney et al. 2023;

Miller et al. 2024b]. Alternative methods such as walk on boundary

(WoB) [Sugimoto et al. 2023] also solve similar BVPs, but WoB ex-

hibits a significantly less favorable bias-variance tradeoff than WoSt

in non-convex domains for both solutions and derivatives [Miller

et al. 2024b, Figure 12 & Table 1]. Consequently, our method inherits

the advantages of WoSt over WoB for derivative estimation.
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2.2 Derivative Estimation with Monte Carlo Solvers
Sawhney and Crane [2020, Section 3] introduced a mean-value

integral over a ball to evaluate the spatial gradient of a Poisson

equation, which can be estimated using bothWoS andWoSt (Section

3.3). However, this formulation requires a non-zero ball radius and

thus cannot be applied directly at the domain boundary. Moreover,

the integral involves a singular kernel that diverges as the ball

radius shrinks to zero—e.g., when a random walk approaches the

boundary. This singularity persists even under gradient-specific

variance reduction techniques such as control variates and antithetic

sampling [Sawhney and Crane 2020; Rioux-Lavoie et al. 2022].

In Neumann-dominated BVPs, noise in WoSt-based solution and

gradient estimators is further amplified by the recursive sampling

of high-dimensional integrals arising from reflected random walks

(Figure 2). Boundary value caching (BVC) [Miller et al. 2023, 2024b]

seeks to amortize this cost by initiating walks only from the bound-

ary and reusing their results to estimate values in the interior. While

BVC reduces variance through correlated sampling away from the

boundary, its gradient estimates near the boundary exhibit even

greater noise than those of WoSt due to hypersingular kernels. In

some cases, the estimators may even fail to converge. Furthermore,

since BVC relies on WoSt for generating random walks, it inherits

the same challenges in Neumann dominated problems: namely, the

need to simulate long, high-variance walks that terminate only on

the Dirichlet boundary, or to apply ad hoc termination strategies

such as Tikhonov regularization for pure Neumann problems, which

introduce non-negligible bias [Sawhney et al. 2023, Section 6.4].

Our method mitigates the effects of singular kernels by modifying

the star-shaped regions used in WoSt to perform random walks. In

particular, as in theWoSt formulation for Robin boundary conditions

(Section 3.2), we introduce a reflectance function into our BIE for

first-order spatial derivatives (Equation 9). This function governs the

radius of each star-shaped region, allowing us to estimate derivatives

directly on the boundary or in the interior, while also ensuring

bounded variance. It also enables unbiased early termination of

walks via Russian roulette. Together, these modifications make our

method significantly more efficient at computing derivatives in

Neumann-dominated problems, including pure Neumann cases.

Finally, Yu et al. [2024] recently proposed using an off-centered

sphere at the boundary to mitigate kernel singularities, but their

method is limited to computing normal derivatives on the Dirich-

let boundary. In Section 6.4, we extend this approach to compute

second-order normal derivatives on the Neumann boundary, en-

abling optimization of parametrically defined geometry under Neu-

mann constraints. In contrast, prior work on differentiable Monte

Carlo PDE solvers [Yılmazer et al. 2022; Yu et al. 2024; Miller et al.

2024a] does not address Neumann boundary optimization, and in-

stead computes parameter derivatives either for material coefficients

inside the domain or Dirichlet conditions on the boundary.

3 BACKGROUND
We review the key concepts and techniques underlying our method

for computing spatial and parameter derivatives of Poisson PDEs,

namely boundary integral equations and Monte Carlo estimation

using the walk on stars algorithm.

Notation. Let 𝜙 (𝑥) be a function defined on a domain Ω ⊂ R3

with boundary 𝜕Ω. We use∇𝜙 to denote its spatial gradient, given by

(𝜕𝑥𝜙, 𝜕𝑦𝜙, 𝜕𝑧𝜙). For any vector 𝒗 ∈ R3
, the directional derivative of

𝜙 along 𝒗 is denoted by 𝜕𝑣𝜙 := 𝒗 · ∇𝜙 . On 𝜕Ω, we denote the normal

derivative by 𝜕𝑛𝜙 , and the tangential gradient by ∇Γ𝜙 . If the do-
main Ω(𝜋) is parameterized by a finite-dimensional vector 𝜋 ∈ R𝑁

,

we write
¤𝜙 for the parameter derivative of a 𝜋-dependent function

𝜙 (𝑥, 𝜋), i.e., the partial derivative with respect to the parameters 𝜋 .

3.1 Boundary Integral Formulation For Poisson Equation
We consider PDEs of the form

Δ𝑢 = −𝑓 on Ω,
𝑢 = 𝑔 on 𝜕ΩD,

𝜕𝑛𝑢 = ℎ on 𝜕ΩN,

(1)

where Δ is the negative-semidefinite Laplacian, and 𝑓 : Ω → R is

the source term. The boundary 𝜕Ω is partitioned into a Dirichlet

part 𝜕ΩD with prescribed values 𝑔 : 𝜕ΩD → R, and a Neumann part

𝜕ΩN with prescribed normal derivatives ℎ : 𝜕ΩN → R. Assuming

𝜕Ω is smooth, the solution satisfies the boundary integral equation

[Costabel 1987; Hunter and Pullan 2001]

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕A

𝑃C (𝑥, 𝑧) 𝑢 (𝑧) − 𝐺C (𝑥, 𝑧) 𝜕𝑛𝑢 (𝑧) d𝑧

+
∫

A

𝐺C (𝑥,𝑦) 𝑓 (𝑦) d𝑦 (2)

for any point 𝑥 ∈ R3
. Here A and C are arbitrary subsets of Ω andR3

(respectively), and 𝛼 (𝑥) = 1 if 𝑥 ∈ 𝐴, 1/2 if 𝑥 ∈ 𝜕𝐴, and 0 otherwise.

Explicit expressions for the Green’s function 𝐺C
and Poisson kernel

𝑃C
are known in free-space (C = R3

) and for balls (C = B(𝑥, 𝑅) with
radius 𝑅) [Sawhney 2024, Appendix A]. To evaluate this BIE at a

point 𝑥 , one must know 𝑢 and 𝜕𝑛𝑢 at all points 𝑧 ∈ 𝜕A. However

these quantities are often only partially specified by the boundary

conditions 𝑔 on 𝜕ΩD and ℎ on 𝜕ΩN.

Moreover, for a given direction 𝒗, one can show–via implicit

differentiation [Henrot and Pierre 2018, Section 5.5]–that the direc-

tional derivative 𝜕𝑣𝑢 of Equation 1 also satisfies a Poisson equation.

As a consequence, 𝜕𝑣𝑢 (𝑥) admits a BIE similar in form to Equation

2 with unknowns 𝜕𝑣𝑢 (𝑧) and 𝜕2

𝑛𝑣𝑢 (𝑧). We make use of such a BIE in

Section 4 to develop our method for estimating spatial derivatives.

3.2 Walk on Stars
The walk on stars method [Sawhney et al. 2023; Miller et al. 2024b]

solves a Poisson equation at any point 𝑥0 ∈ Ω by performing in-

dependent random walks within the domain (Figure 2). Each walk

accumulates contributions from the source term 𝑓 in the interior

and from the Neumann boundary data ℎ when reflecting off 𝜕ΩN.

Walks terminate upon reaching the Dirichlet boundary, defined as

being within an 𝜀 distance of 𝜕ΩD. At termination, they collect the

value 𝑔 from the closest projected point 𝑥𝑘 ∈ 𝜕ΩD to the final walk

location 𝑥𝑘 (for 𝑘 ≥ 0).

3.2.1 Boundary Integral Formulation. Concretely, WoSt acts as a

Monte Carlo estimator for the boundary integral in Equation 2

by selecting A to be a star-shaped region St(𝑥, 𝑅) relative to the

current random walk location 𝑥 (inset). This region is constructed

by intersecting the domain Ω with a ball B(𝑥, 𝑅), where the radius
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𝑅 is chosen as the minimum distance from 𝑥 to the closest silhouette
point on 𝜕ΩN, and to the closest point on 𝜕ΩD. With this choice of

A, the BIE involves only a single unknown function 𝑢 (𝑧):

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕St

𝑃B (𝑥, 𝑧) 𝑢 (𝑧) d𝑧 −
∫
𝜕StN

𝐺B (𝑥, 𝑧) ℎ(𝑧) d𝑧

+
∫

St

𝐺B (𝑥,𝑦) 𝑓 (𝑦) d𝑦. (3)

x
x

∂ΩN

R

∂StN

∂StB
St(x ,R ) ∂ΩD

Here, 𝜕StN denotes the portion

of the star-shaped boundary 𝜕St

that lies on the Neumann bound-

ary, where the normal derivative

𝜕𝑛𝑢 (𝑧) = ℎ is prescribed. On the

spherical portion 𝜕StB
:= 𝜕B ∩ 𝜕St,

the Green’s function 𝐺B
vanishes,

so 𝜕𝑛𝑢 (𝑧) does not contribute and
need not be evaluated.

3.2.2 Monte Carlo Estimation. The integrals involving the Neu-

mann boundary data ℎ and the source term 𝑓 in Equation 3 contain

no unknowns and can be estimated directly. We refer readers to

Sawhney et al. [2023, Sections 4.5 & 4.6] for Monte Carlo strategies

used to evaluate these terms. For the remaining integral involving

the unknown function 𝑢 (𝑧), WoSt employs a single-sample Monte

Carlo estimator at each step 𝑥𝑘 ∈ Ω of the random walk:

𝑢 (𝑥𝑘 ) =
𝑃B (𝑥𝑘 , 𝑥𝑘+1) 𝑢 (𝑥𝑘+1)
𝛼 (𝑥𝑘 ) 𝑝𝜕St(𝑥𝑘 ,𝑅) (𝑥𝑘+1)

. (4)

This estimator is recursive, as𝑢 appears on both sides of the equation.

The next walk location 𝑥𝑘+1 is sampled from the probability density

function 𝑝𝜕St
defined over 𝜕St(𝑥𝑘 , 𝑅).

Conveniently, the Poisson kernel 𝑃B (𝑥𝑘 , 𝑥𝑘+1) is the signed solid

angle subtended by 𝜕St at 𝑥𝑘 [Sawhney et al. 2023, Equation 25].

Thus, similar to Monte Carlo path tracing, WoSt uses direction sam-
pling to determine 𝑥𝑘+1: it casts a ray from 𝑥𝑘 in a direction uni-

formly sampled from the unit sphere and takes the first intersection

with 𝜕St. If 𝑥𝑘 lies on the Neumann boundary 𝜕ΩN, the ray direction

is instead sampled from a hemisphere aligned with the inward nor-

mal, ensuring the walk remains inside the domain. Under this sam-

pling scheme, the ratio 𝑃B (𝑥𝑘 , 𝑥𝑘+1)/[𝛼 (𝑥𝑘 )𝑝𝜕St (𝑥𝑘+1)] becomes 1

at each step, leaving 𝑢 unchanged from the multiplicative identity.

3.2.3 Pure Neumann conditions. In the absence of a Dirichlet bound-
ary, random walks under WoSt never terminate (Figure 2, bottom
left) and continue accumulating contributions from 𝑓 and ℎ in-

definitely. This behavior reflects the underlying structure of pure

Neumann problems, in which solutions are defined only up to an

additive constant. Terminating walks arbitrarily–such as by impos-

ing a maximum walk length–introduces bias that depends on the

chosen termination criterion.

Sawhney et al. [2023] propose addressing this issue via Tikhonov

regularization [Tikhonov 1998], which replaces the original Pois-

son equation with a screened version incorporating an adaptively

set absorption coefficient 𝜎 . This modification allows walks to be

terminated stochastically within the domain, with the likelihood of

absorption increasing with 𝜎 . While this approach reduces bias and

variance relative to fixed-length truncation, selecting an appropri-

ate 𝜎 remains challenging: larger values induce greater bias, while

smaller values lead to higher variance caused by longer walks. In

Section 6.2, we demonstrate that our method can be used to compute

the solution to pure Neumann problems up to an additive constant,

with significantly less error and walks of finite length.

3.2.4 The Reflectance Function. For partially absorbing and reflect-

ing Robin boundary conditions of the form 𝜕𝑛𝑢 + 𝜇𝑢 = ℓ with 𝜇 > 0,

Miller et al. [2024b] generalize the WoSt estimator in Equation 4 by

introducing a reflectance function,

𝜌 (𝑥𝑘 , 𝑥𝑘+1) :=

{
1, on 𝜕StB,

1 − 𝜇 (𝑥𝑘+1)
𝐺B (𝑥𝑘 ,𝑥𝑘+1 )
𝑃B (𝑥𝑘 ,𝑥𝑘+1 )

, on 𝜕StR,
(5)

where 𝜕StR denotes the portion of 𝜕St on the Robin boundary 𝜕ΩR.

At each step𝑘 , the running estimate𝑢 is multiplied by the reflectance

𝜌 (𝑥𝑘 , 𝑥𝑘+1). Of particular importance to our method, 𝜌 informs

the selection of the radius 𝑅 for the star-shaped region St, so that

reflectance remains within the range [0, 1]. This boundedness allows
𝜌 to also serve as a survival probability in a Russian roulette scheme,

enabling unbiased early termination of walks on 𝜕ΩR. In Section

4, we develop a modified WoSt estimator for spatial derivatives of

Equation 1, which similarly uses a reflectance function to terminate

walks on the Neumann boundary without introducing bias.

3.3 Estimating Spatial Derivatives with Walk on Stars
For a ball B(𝑐, 𝑅) centered at a point 𝑐 ∈ Ω and contained within

the domain, Yu et al. [2024], building on Sawhney and Crane [2020];

Sawhney et al. [2022], use the following integral expression to eval-

uate the spatial gradient ∇𝑢 of a Poisson equation at a point 𝑥 :

∇𝑢 (𝑥) =
∫
𝜕B(𝑐,𝑅)

∇𝑃B (𝑥, 𝑧)𝑢 (𝑧) d𝑧 +
∫

B(𝑐,𝑅)
∇𝐺B (𝑥,𝑦) 𝑓 (𝑦) d𝑦.

(6)

This formulation is convenient because unknown values𝑢 (𝑧) can be
estimated recursively using WoSt. However, sampling 𝑧 uniformly

on the sphere 𝜕B does not properly account for the radial singularity

in the kernel ∇𝑃B
. This singularity becomes increasingly ill-behaved

as 𝑐 approaches the boundary and 𝑅 reduces to 0, resulting in noisy

estimates near the boundary and incorrect estimates directly on it.

To address this issue, Sawhney and Crane [2020, Section 4] and

Rioux-Lavoie et al. [2022, Section 4] propose control and antithetic

variate strategies, respectively, for the case where the evaluation

point 𝑥 coincides with the center 𝑐 in Equation 6. While these tech-

niques reduce noise near the boundary, the singularity in ∇𝑃B
per-

sists. We compare our method with this baseline in Section 6.1.

Sawhney and Crane [2020, Section 3] also provide an expression

for the Hessian of𝑢, but it involves hypersingular kernels that result

in even higher variance. In Section 4.4, we introduce a more tractable

estimator for the second normal derivative 𝜕2

𝑛𝑢.

3.4 PDE-Constrained Shape Optimization
Inverse problems involving the optimization of domain shape un-

der PDE constraints arise across science and engineering, from

airfoil and heat-sink design [Hicks and Henne 1977; Zhan et al.

2008] to structural lightweighting [Allaire et al. 2014]. While Monte
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Carlo solvers have recently been applied to inverse problems involv-

ing Poisson-like PDEs [Yu et al. 2024; Miller et al. 2024a; Yilmazer

et al. 2024], prior work does not support parameterized Neumann

boundary conditions ℎ(𝑥, 𝜋). This omission stems from the fact that

optimizing arbitrary parameters 𝜋 requires solving a differential

version of Equation 1 [Henrot and Pierre 2018, Equation 5.79]:

Δ ¤𝑢 = 0 on Ω,
¤𝑢 = 0 on 𝜕ΩD,

𝜕𝑛 ¤𝑢 =
(
𝜕𝑛ℎ − 𝜕2

𝑛𝑢
)

V𝑛 + ∇𝑢 · ∇ΓV𝑛 on 𝜕ΩN,

(7)

where ¤𝑢 is the parameter derivative and V𝑛 denotes the normal

velocity of the boundary. For simplicity, we assume that the source

term 𝑓 and Dirichlet data𝑔 do not depend on 𝜋 ; prior work addresses

these cases. Directly solving this PDE with WoSt is challenging

due to the nested dependence of ¤𝑢 on first and second-order spatial

derivatives–specifically ∇𝑢 and 𝜕2

𝑛𝑢–for which existing Monte Carlo

estimators can be inefficient. Our method addresses this challenge

by providing more reliable estimates of these derivative terms.

4 METHOD
In this section, we develop an alternative to the baseline WoSt esti-

mator for spatial derivatives described in Section 3.3, which does

not suffer from singular kernels and can be evaluated directly on the

domain boundary. We begin by deriving a boundary integral equa-

tion in Section 4.1 that is specifically tailored towards estimating

spatial derivatives. A key advantage of this formulation–detailed in

Section 4.2–is that unlike random walks for the solution estimator

which must always reflect off the Neumann boundary, walks for the

derivative estimator can be terminated early without introducing

bias. This leads to shorter walk lengths and, as we show in Section

6, significantly lower error compared to the baseline approach.

We focus initially on pure Neumann problems in Sections 4.1 and

4.2 to describe the core components of our estimator.We then extend

our method to mixed Dirichlet–Neumann problems in Section 4.3.

In Section 4.4 we introduce an estimator for the second normal

derivative of a Poisson equation, which we use for gradient-based

optimization of Neumann boundaries in Section 6.4. Section 5 then

provides implementation details for triangle meshes.

4.1 Boundary Integral Equation for Directional Derivatives
As discussed in Section 3.1, our method builds on the insight that just

like the solution 𝑢 to a Poisson equation, its directional derivative

𝜕𝑣𝑢 along any direction 𝒗 also satisfies a BIE over a star-shaped

region St. In particular, we have

𝛼 (𝑥) 𝜕𝑣𝑢 (𝑥) =
∫
𝜕St

𝑃B (𝑥, 𝑧) 𝜕𝑣𝑢 (𝑧) d𝑧 −
∫
𝜕StN

𝐺B (𝑥, 𝑧) 𝜕2

𝑛𝑣𝑢 (𝑧) d𝑧

+
∫

St

𝐺B (𝑥,𝑦) 𝜕𝑣 𝑓 (𝑦) d𝑦. (8)

However, unlike the boundary integral in Equation 3, a key chal-

lenge in estimating Equation 8 is the presence of two unknown

functions: the directional derivative 𝜕𝑣𝑢 (𝑧) and the second-order

mixed derivative 𝜕2

𝑛𝑣𝑢 (𝑧). Estimating both terms simultaneously

using WoSt would require a branching random walk, where new

walks would need to be spawned to estimate each nested derivative.

This would lead to significantly higher computational and memory

costs per sample. Moreover, as the boundary conditions in Equation

1 are specified only for the solution 𝑢 and its normal derivative, the

boundary constraints governing 𝜕𝑣𝑢 and 𝜕2

𝑛𝑣𝑢 are not well defined.

To overcome these issues, we first reformulate the boundary

integral above to follow a structure parallel to Equation 3, involving

only a single unknown function. In Appendix A, we show that this

transformation can be achieved by applying certain vector calculus

identities to the second-order derivative term 𝜕2

𝑛𝑣𝑢, and performing

integration by parts on the second integral in Equation 8. Assuming

𝜕ΩN is smooth, the resulting integral expression is

𝛼 (𝑥) 𝜕𝑣𝑢 (𝑥) =
∫
𝜕St

𝑃B (𝑥, 𝑧)
(
|𝝆𝑣 (𝑥, 𝑧) |𝜕𝜌𝑢 (𝑧) + 𝜇𝑣 (𝑧)

)
d𝑧

−
∫
𝜕StN

𝐺B (𝑥, 𝑧) 𝜂𝑣 (𝑧) d𝑧

+
∫

St

𝐺B (𝑥,𝑦) 𝜕𝑣 𝑓 (𝑦) d𝑦, (9)

where the auxiliary functions 𝝆𝑣 , 𝜇𝑣 and 𝜂𝑣 are defined as

𝝆𝑣 (𝑥, 𝑧) =
{
𝒗 if 𝑧 ∈ 𝜕StB

𝒗Γ − 𝒗 · 𝒏 ∇Γ𝐺
B (𝑥,𝑧 )

𝑃B (𝑥,𝑧 ) if 𝑧 ∈ 𝜕StN,
(10)

𝜇𝑣 (𝑧) =
{

0 if 𝑧 ∈ 𝜕StB

𝒗 · 𝒏ℎ(𝑧) if 𝑧 ∈ 𝜕StN,
(11)

𝜂𝑣 (𝑧) = 𝜕𝑣Γℎ(𝑧) − 𝒗 · 𝒏𝐻 (𝑧)ℎ(𝑧) − 𝒗 · 𝒏𝑓 (𝑧) . (12)

Here, 𝒗Γ denotes the tangential components of the input direction 𝒗
along the Neumann boundary with outward normal 𝒏, and 𝐻 is the

boundary’s mean curvature. We term 𝝆𝑣 the reflectance function,
for reasons detailed in Section 4.2. Unlike its scalar counterpart for

Robin boundary conditions (Section 3.2.4), 𝝆𝑣 is vector-valued in

this setting. Accordingly, we use 𝜕𝜌𝑢 (𝑧) in Equation 9 as a shorthand
for the directional derivative of 𝑢 evaluated along the direction of

𝝆𝑣 (𝑥, 𝑧), as defined by the two cases in Equation 10.

Monte Carlo Estimation. All terms in Equation 9 other than 𝜕𝜌𝑢

depend solely on known boundary data, geometric quantities, and

the input direction 𝒗. This structure enables the construction of a

non-branching WoSt estimator for the directional derivative. Other

spatial derivatives, such as the gradient, divergence and curl, can be

assembled by evaluating directional derivatives along appropriate

coordinate axes or field-aligned directions.

We can estimate the second and third integrals in Equation 9,

involving 𝜂𝑣 and 𝜕𝑣 𝑓 respectively, using the same Monte Carlo

strategies developed for the corresponding terms in the original

WoSt solution estimator (Section 3.2). We refer readers to Sawhney

et al. [2023, Sections 4.5 & 4.6] for details. For the first integral,

we follow the approach in Section 3.2.2 to formulate a recursive

single-sample estimator at each step 𝑥𝑘 ∈ Ω of a random walk:

𝜕𝑣𝑢 (𝑥𝑘 ) =
𝑃B (𝑥𝑘 , 𝑥𝑘+1)

(
|𝝆𝑣 (𝑥𝑘 , 𝑥𝑘+1) |𝜕𝜌𝑢 (𝑥𝑘+1) + 𝜇𝑣 (𝑥𝑘+1)

)
𝛼 (𝑥𝑘 ) 𝑝𝜕St(𝑥𝑘 ,𝑅) (𝑥𝑘+1)

.

(13)

As before, the next walk location 𝑥𝑘+1 is determined using direction

sampling. As a result, the running estimate on the right hand side

is updated using a multiplicative factor |𝝆𝑣 | and a known additive
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ALGORITHM 1: 𝜕WalkOnStars(𝑥, 𝒏, 𝒗, 𝜀 )
Input: Starting location 𝑥 ∈ Ω of random walk, normal 𝒏 at 𝑥 (undefined if 𝑥 ∉ 𝜕ΩN), direction 𝒗 for derivative, 𝜀-shell.

Output: Single-sample directional derivative estimate 𝜕𝑣𝑢 (𝑥 ) for a Poisson equation with pure Neumann boundary conditions.

1: 𝑅 ← ComputeStarRegionRadius(𝑥, 𝒗 ) ⊲Compute radius of star region St(𝑥, 𝑅) containing Neumann boundary 𝜕𝛀N (Sections 5.1-5.2)
2: 𝑅 ← max(𝜀, 𝑅) ⊲Ensure 𝑅 ≥ 𝜀 to prevent walk from stalling on concave part of 𝜕ΩN [Sawhney et al. 2023, Figure 9]
3: 𝒅 ← SampleUnitSphere() ⊲Sample a direction 𝒅 uniformly on the unit sphere
4: if 𝑥 ∈ 𝜕𝛀N and 𝒏 · 𝒅 > 0 then 𝒅 ← −𝒅 ⊲If 𝑥 lies on 𝜕𝛀N, ensure 𝒅 is sampled on hemisphere with axis −𝒏
5: hit, 𝑝, 𝒏← IntersectNeumannBoundary(𝑥, 𝒅, 𝑅) ⊲Intersect 𝜕StN with ray 𝑥 + 𝑅 𝒅 , and get first hit
6: if not hit then 𝑝 ← 𝑥 + 𝑅 𝒅 ⊲If there is no hit with 𝜕StN, update next walk location to point on 𝜕StB instead
7: 𝐼̂𝜂 ← NeumannBoundaryEstimate(𝑥, 𝒗, 𝑅) ⊲Estimate boundary contribution on 𝜕StN (second integral in Equation 9)
8: 𝐼̂𝜕𝑣 𝑓 ← SourceEstimate(𝑥, 𝑝, 𝒅, 𝑅) ⊲Estimate source contribution in St (third integral in Equation 9)
9: 𝝆𝑣 ← hit ? 𝒗 − 𝒗 · 𝒏 𝑝−𝑥

(𝑝−𝑥 ) ·𝒏 : 𝒗 ⊲Compute reflectance (Equation 14)

10: if |𝝆𝑣 | < SampleUniform(0, 1) then return 𝜇𝑣 (𝑥, 𝑝, 𝒏, 𝒗 ) − 𝐼̂𝜂 + 𝐼̂𝜕𝑣 𝑓 ⊲Probabilistically terminate walk using Russian roulette

11: return 𝜕WalkOnStars(𝑝, 𝒏, 𝝆𝑣/|𝝆𝑣 |, 𝜀 ) + 𝜇𝑣 (𝑥, 𝑝, 𝒏, 𝒗 ) − 𝐼̂𝜂 + 𝐼̂𝜕𝑣 𝑓 ⊲Repeat from updated walk location (𝒏 is undefined if 𝑝 ∉ 𝜕𝛀N)

term 𝜇𝑣 . Importantly, the direction of each estimate evolves over the

course of the walk, as it is always aligned with the local direction

of 𝝆𝑣 . We provide pseudocode for the full directional derivative

estimator in Algorithm 1, which retains the same structure as the

WoSt algorithm for the solution [Miller et al. 2024b, Algorithm 1].

4.2 Terminating Walks on the Neumann Boundary
As described in Section 3.2.3, the originalWoSt algorithm is ill-suited

for solving pure Neumann problems—whether for the solution or

its derivatives—because random walks continue indefinitely unless

artificially truncated. However, unlike the solution 𝑢, which is de-

fined only up to an additive constant, the directional derivative 𝜕𝑣𝑢

is uniquely determined. This distinction removes the ambiguity in-

herent to the solution and suggests that an estimator for 𝜕𝑣𝑢 can, in

principle, be constructed without arbitrary termination. The vector-

valued function 𝝆𝑣 in our derivative estimator (Equation 13) offers

such a mechanism, similar to how the scalar function 𝜌 in Equation

5 facilitates walk termination for Robin boundary conditions.

In more detail, when the radius 𝑅 of a star-shaped region St(𝑥, 𝑅)
is chosen as the distance from 𝑥 to the closest silhouette point on the

reflecting boundary, St may include boundary points for which the

reflectance functions become unbounded (Figure 3). For instance,

in both 2D and 3D, 𝝆𝑣 has the explicit form

𝝆𝑣 = 𝒗 − 𝒗 · 𝒏 𝑧 − 𝑥
(𝑧 − 𝑥) · 𝒏 , (14)

where 𝒏 denotes the outward normal at the boundary point 𝑧 ∈ 𝜕StN.

The magnitude of this vector diverges as the denominator (𝑧 −𝑥) ·𝒏
approaches zero, i.e., when the view direction from 𝑥 is nearly

perpendicular to 𝒏. However, by selecting a smaller radius while still

ensuring that St remains star-shaped (i.e., every boundary point in

St remains visible from its center 𝑥 ), we can restrict the magnitude

of 𝝆𝑣 to lie within a desired range, such as [0, 1]. This mirrors the

strategy used by Miller et al. [2024b] for Robin problems, where the

scalar reflectance function 𝜌 is likewise bounded and interpreted as

a reflection probability on 𝜕StN—hence the term “reflectance.”

For derivative estimation, we select the smallest radius such that

the corresponding star-shaped region will exclude any boundary

| ρv | ∂ [0,1] | ρv | Ω [0,1]

∞→
N

WoSt for solution 
distance to closest silhouee R =

WoSt for directional derivative 
 selected s.t.  R | ρv | ∂ [0,1]

∞→
N

xkxk

RR

Fig. 3. Unlike the WoSt solution estimator, which sets the star-shaped
region radius 𝑅 to the distance from the walk location 𝑥𝑘 to the closest
silhouette point on 𝜕ΩN (left), the derivative estimator chooses 𝑅 so that
the reflectance magnitude |𝝆𝑣 | remains within a prescribed range (right).

point where the reflectance exceeds a prescribed threshold 𝜌max:

𝑅 = min{∥𝑥 − 𝑧∥ : 𝑧 ∈ 𝜕Ω𝑁 , |𝝆𝑣 (𝑥, 𝑧) | ≥ 𝜌max} (15)

We assume 𝜌max = 1 in Algorithm 1, and provide implementation

details for computing 𝑅 when the boundary 𝜕Ω𝑁 is represented by

a triangle mesh in Section 5.

Termination Using Russian Roulette. When |𝝆𝑣 | < 1, we terminate

walks with probability 1 − |𝝆𝑣 | at each step (line 10, Algorithm 1). If

a walk survives, we normalize the reflectance to unit length and con-

tinue estimating the directional derivative along 𝝆𝑣/|𝝆𝑣 |, without
scaling the estimate by |𝝆𝑣 | (line 11). This Russian roulette scheme

guarantees finite walk lengths even in pure Neumann problems,

while avoiding both the bias of arbitrary truncation and the variance

from singular kernels.

4.3 Extension to Mixed Dirichlet-Neumann Conditions
While our focus has been on Neumann boundary conditions which

are more challenging for Monte Carlo PDE solvers, our derivative es-

timator also extends naturally to domains with Dirichlet conditions.
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Fig. 4. Following Yu et al. [2024], our method estimates the normal deriv-
ative 𝜕𝑛𝑢 on the Dirichlet boundary 𝜕ΩD by launching a secondary walk,
shown in red, from an off-centered sphere tangent to the boundary (Section
4.3). We extend this approach in Section 4.4 to also estimate the second
normal derivative 𝜕2

𝑛𝑢 on the Neumann boundary 𝜕ΩN.

One possible approach is to formulate a boundary integral equa-

tion analogous to Equation 9 for the directional derivative, where

the star-shaped region St may include portions of 𝜕ΩD as well. We

derive such an expression in Appendix B.

In practice, we adopt a simpler strategy more closely aligned with

the WoSt solution estimator: we restrict the radius of St so it does

not exceed the distance to 𝜕ΩD. Any walk that comes within an 𝜀

distance of the Dirichlet boundary is projected onto 𝜕ΩD, where the

tangential component of 𝜕𝑣𝑢 is set to 𝜕𝑣Γ𝑔, the directional derivative

of the Dirichlet data along the tangent vector 𝒗Γ . Since the normal

derivative 𝜕𝑛𝑢 is not prescribed on 𝜕ΩD, we follow the strategy of

Yu et al. [2024, Section 5.2] and estimate it by launching a secondary

WoSt process from an off-centered sphere tangent to the boundary

(Figure 4). This construction enables the use of control variates

to mitigate kernel singularities on 𝜕ΩD, providing lower-variance

reconstruction of 𝜕𝑣𝑢 from its tangential and normal components.

4.4 Higher Order Derivative Estimation
Certain applications, such as the gradient-based optimization of

Neumann boundaries (Section 3.4), require estimating higher-order

derivatives. In particular, computing the parameter derivative ¤𝑢 in

Equation 7 involves evaluating the second normal derivative 𝜕2

𝑛𝑢

and tangential derivative ∇𝑢 · ∇Γ𝑉𝑛 on the Neumann boundary.

While the latter can be estimated using our directional derivative

estimator (Equation 13), the former presents an additional challenge.

In this section, we focus specifically on estimating 𝜕2

𝑛𝑢 on 𝜕ΩN.

We do not address other second-order derivatives, such as the full

Hessian of 𝑢, which are beyond the scope of this work. The basic

insight is that since the directional derivative 𝜕𝑛𝑢 satisfies a Poisson

equation, its own normal derivative admits a boundary integral

representation similar to Equation 6. In particular, we have

𝜕2

𝑛𝑢 (𝑥) =
∫
𝜕B(𝑐,𝑅)

𝜕𝑛𝑃
B (𝑥, 𝑧) 𝜕𝑛𝑢 (𝑧) d𝑧

+
∫

B(𝑐,𝑅)
𝜕𝑛𝐺

B (𝑥,𝑦) 𝜕𝑛 𝑓 (𝑦) d𝑦,

(16)

(1)

(2)

(3a)

(3b)

x x

vv

p p

R

n n

r

| ρv | ≤ ρmax

Fig. 5. Geometric construction for determining the radius of a star-shaped
region for a plane and triangle. Left: The reflectance vector 𝝆𝑣 lies in the
plane and defines a disk of radius 𝑟 centered at the intersection point 𝑝 ,
such that |𝝆𝑣 | ≤ 𝜌max inside the disk. The star-shaped region radius 𝑅 is
the distance from 𝑥 to the disk boundary. Right: Three ways a triangle may
intersect the disk: (1) lies fully outside, (2) lies fully inside, and (3a,b) partially
overlaps. In cases (1) and (3), the triangle constrains the star-shaped radius.

where the ball B(𝑐, 𝑅) is centered at 𝑐 ∈ Ω and is fully contained

within the domain. As illustrated in Figure 4, the ball is constructed

to be tangent to the Neumann boundary at the evaluation point

𝑥 , which lies on both 𝜕ΩN and 𝜕B(𝑐, 𝑅), with outward normal 𝒏.
This formulation allows us to estimate 𝜕2

𝑛𝑢 by recursively applying

our directional derivative estimator to 𝜕𝑛𝑢 (𝑧) along the integration

boundary. Since the singular kernels 𝜕𝑛𝑃
B (𝑥, 𝑧) and 𝜕𝑛𝐺

B (𝑥,𝑦) in
Equation 16 can lead to high variance near the evaluation point 𝑥 ,

we also provide a control variate strategy in Appendix D.3 for stable

and accurate estimation.

5 IMPLEMENTATION ON TRIANGLE MESHES
As discussed in Section 4.2, selecting an appropriate radius for star-

shaped regions is essential for bounding the magnitude of the re-

flectance at each step of a walk. However, closed-form expressions

for this radius are generally unavailable in domains with arbitrary

boundary geometry. In this section, we describe how to compute

star-shaped region radii on triangle meshes. We begin in Section 5.1

with the case of a single triangle, and generalize to full meshes in

Section 5.2, where we accelerate radius queries using a spatial hier-

archy. Then, in Section 5.3, we present a specialized edge sampling

strategy for computing the second integral in Equation 9, which

involves evaluating the directional derivative of known Neumann

data and local mean curvature.

5.1 Star-Shaped Region Selection For A Triangle
To compute the radius 𝑅 of a star-shaped region St centered on 𝑥

when the Neumann boundary is defined by a single triangle, we first

consider the simpler case of an infinite plane. The reflectance vector

𝝆𝑣 from Equation 14 lies entirely within the plane, as its dot product

with the plane’s normal 𝒏 yields zero. Geometrically, the magnitude

|𝝆𝑣 | defines the radius 𝑟 of a disk in the plane centered at the point

𝑝 (Figure 5, left), where a ray from 𝑥 in direction 𝒗 intersects the

plane. A short derivation shows that 𝑟 satisfies

𝑟 ≤ 𝜌max ·
(𝑝 − 𝑥) · 𝒏

𝒗 · 𝒏 , (17)

implying that any point 𝑧 within this disk yields a reflectance magni-

tude below the threshold 𝜌max. Outside the disk, reflectance values
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exceed the threshold. Hence, for a plane, the radius 𝑅 of St is given

by the minimum distance from 𝑥 to the disk boundary.

For a triangle that spans only a subset of the plane, we restrict at-

tention to the portion of the disk that overlaps the triangle (Figure 5,

right). This intersection yields three distinct cases:

(1) No overlap:All points in the triangle produce reflectance values
above 𝜌max. To exclude these points from St, we set 𝑅 to the

minimum distance from 𝑥 to the triangle.

(2) Full containment: All points in the triangle satisfy the re-

flectance constraint. Since the triangle does not place a restric-

tion on St, we set 𝑅 = ∞.

(3) Partial intersection: Only a portion of the triangle satisfies

the reflectance constraint. In this case, we compute 𝑅 as the

minimum distance from 𝑥 to the boundary of the intersection

between the triangle and the disk:

𝑅 = min{∥𝑥 − 𝑧∥ : 𝑧 ∉ △ ∩ ⃝}. (18)

Practically, this involves evaluating the minimum distance to

the disk boundary, as well as to the intersection points between

the triangle’s edges and the disk boundary.

5.2 Star-Shaped Region Selection For Triangle Meshes
Computing the radius 𝑅 by evaluating every triangle individually

and selecting the minimum is computationally expensive for large

meshes. To accelerate both star-shaped region selection and ray in-

tersection against the Neumann boundary (Algorithm 1, lines 1 & 5),
we adopt a spatialized normal cone hierarchy (SNCH) [Johnson and

Cohen 2001], which remains unchanged from prior WoSt estimators.

This structure augments a standard bounding volume hierarchywith

angular bounds, enabling efficient pruning based on both spatial

proximity and surface orientation. Specifically, each node in the

SNCH node

normal cone 

query 
point 

view 
cone

SNCH stores an axis-aligned

bounding box (AABB) along

with a normal cone, i.e., a cone
that bounds all surface normals

of the triangles in the node (in-

set). The cone’s axis is the av-

erage normal direction, and its

half-angle captures the maxi-

mum deviation from this axis.

Traversal and Culling. To compute 𝑅 at a given walk location 𝑥 ,

we traverse the SNCH in depth-first order, progressively refining a

conservative estimate of the radius. At each node, we construct a

view cone rooted at 𝑥 , whose axis points to the node’s centroid and

whose half-angle tightly encloses the node’s AABB. Following the

closest silhouette point query procedure of Sawhney et al. [2023,

Section 5.1.2], we first check whether the view cone and normal

cone admit a pair of mutually orthogonal directions [Sawhney et al.

2023, Algorithm 4]. If so, the node may contain silhouette edges

and must be visited. If not, we compute a conservative upper bound

for the reflectance magnitude |𝝆𝑣 | using the node’s spatial and

angular bounds, as described below. If this bound is smaller than

the threshold 𝜌max or if the node lies entirely outside the current

best radius estimate, it is safely culled. For the surviving leaf nodes,

we apply the triangle-level procedure from Section 5.1, potentially

tightening the global minimum. This traversal strategy substantially

reduces the number of reflectance evaluations and offers significant

speedups over brute-force linear traversal.

Upper Bound For Reflectance Magnitude. To conservatively bound

reflectance over an entire SNCH node, we analyze the squared

magnitude of Equation 14:��𝝆𝑣 (𝑥, 𝑧)��2 = 1 − 2𝑎𝑏 + 𝑎2,

where 𝑎 =
𝒗 · 𝒏
𝒅 · 𝒏 , 𝑏 = 𝒗 · 𝒅, 𝒅 =

𝑧 − 𝑥
∥𝑧 − 𝑥 ∥ .

(19)

The dot products in 𝑎 and 𝑏 vary over angular intervals deter-

mined by the node’s normal cone and the view cone. Using in-

terval arithmetic, the intervals 𝒅 · 𝒏 ∈ [cosmin 𝛼, cosmax 𝛼], 𝒗 · 𝒏 ∈
[cosmin 𝛽, cosmax 𝛽], and 𝒗 · 𝒅 ∈ [cosmin 𝛾, cosmax 𝛾] yield conser-

vative bounds for 𝑎 and 𝑏:

𝑎 ∈
[

cosmin 𝛽

cosmax 𝛼
,

cosmax 𝛽

cosmin 𝛼

]
, 𝑏 ∈ [cosmin 𝛾, cosmax 𝛾] . (20)

Applying these expressions to Equation 19 gives an upper bound

on the squared reflectance:��𝝆𝑣 ��2upper = 1 − 2 min

(
𝑎min𝑏min, 𝑎min𝑏max, 𝑎max𝑏min, 𝑎max𝑏max

)
+max

(
𝑎2

min
, 𝑎2

max

)
. (21)

If

��𝝆𝑣 ��2upper < 𝜌2

max
, the node cannot influence the radius estimate

and is culled; otherwise, it must be visited.

5.3 Resolving Derivative Discontinuities
The function 𝜂𝑣 (Equation 12) on the Neumann boundary involves

the surface derivative 𝜕𝑣Γℎ and the mean curvature 𝐻 . Both be-

come singular along mesh edges where the surface normal changes

abruptly, yielding Dirac delta contributions supported only on edges.

(Note that𝐻 vanishes within each flat triangle.) Because these contri-

butions lie on sets of measure zero, standard Monte Carlo sampling

over triangles can fail to capture them, leading to biased directional

derivative estimates [Li et al. 2018].

Line Integral Formulation. To correct this bias, we augment the

surface integral

∫
𝜕StN

𝐺B𝜂𝑣 in Equation 9 with an additional line in-

tegral over the set of Neumann boundary edges 𝜕St
E

N
inside

ε

n+

n−

t+

t− e+
e−

a star-shaped region St. This is done by mol-

lifying the geometry: each sharp edge is re-

placed by a narrow band of width 𝜀, across

which surface normals transition smoothly

and the function 𝜂𝑣 becomes regular (inset).

In Appendix C, we show the contribution of

this band converges, in the limit 𝜀�0, to the

following line integral:∫
𝜕St

E

N

𝐺B (𝑥, 𝑧)
[
𝒗 · 𝒕+ (𝑧)ℎ+ (𝑧) + 𝒗 · 𝒕− (𝑧)ℎ− (𝑧)

]
d𝑙, (22)

where 𝑧 lies on an edge shared by triangles with normals 𝒏+ and
𝒏− . Letting 𝒆+ and 𝒆− be unit tangent vectors along opposite edge
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directions, the corresponding in-plane edge normals are defined as

𝒕+ =
𝒆+ × 𝒏+
∥𝒆+ × 𝒏+∥ , 𝒕− =

𝒆− × 𝒏−
∥𝒆− × 𝒏− ∥ . (23)

The values ℎ+ (𝑧) and ℎ− (𝑧) denote the Neumann data from the

adjacent triangles. Though 𝑧 lies on a shared edge, this formulation

correctly captures discontinuities in both surface geometry and

boundary data.

Edge Sampling. Fortunately, sampling Equation 22 requires no

additional machinery beyond an SNCH-based traversal used in prior

WoSt estimators. We reuse the point sampling query of Sawhney

et al. [2023, Section 5.2] to efficiently identify Neumann boundary

edges within St, then uniformly sample a point 𝑧 along one such

edge. In Appendix D.2, we also describe a control variate strategy

to mitigate singular behavior in the Green’s function 𝐺B (𝑥, 𝑧) as a
sampled point 𝑧 along an edge approaches the query location 𝑥 .

Additional considerations. While sampling the above line integral

resolves singularities from 𝜂𝑣 , other sources of irregularity remain.

In particular, the directional derivative 𝜕𝜌𝑢 may also exhibit limited

smoothness near sharp concave corners on 𝜕ΩN. We revisit this

issue in Section 6.5.

6 RESULTS
We implement our solver using Dr.Jit [Jakob et al. 2022] for parallel

execution of random walks on the GPU. For star-shaped region

selection, ray intersections, and distance and point sampling queries,

we use the spatialized normal cone hierarchy from the fcpw library

[Sawhney 2021]. The hierarchy is constructed on the CPU, while

traversal for all queries is performed on the GPU. All experiments

were run on a workstation with an NVIDIA RTX 4090 GPU.

We begin by validating our method on synthetic test problems

(Section 6.1). We then demonstrate new capabilities enabled by our

approach, including reconstructing the solution to pure Neumann

problems (Section 6.2), simulating divergence-free magnetic fields

(Section 6.3), and optimizing Neumann boundaries via parameter

derivative estimation (Section 6.4). Finally, Section 6.5 discusses the

unique challenges of computing derivatives in polyhedral domains.

6.1 Validation
Wevalidate ourmethod on two synthetic test cases, shown in Figures

6 and 7, using domains defined by 2D polylines (first row) and 3D

triangle meshes (second row), respectively. For the 3D model, we

restrict evaluation to a 2D slice through the volume. In each case, we

prescribe an analytical function 𝑢 within the domain and compute

the corresponding source term and boundary conditions to define a

Poisson problem:

Δ𝑢 = Δ𝑢 on Ω,
𝑢 = 𝑢 on 𝜕ΩD,

𝜕𝑛𝑢 = 𝜕𝑛𝑢 on 𝜕ΩN .

(24)

We evaluate the accuracy of our method by comparing its estimates

of the directional derivative 𝜕𝑥𝑢 to the exact value 𝜕𝑥𝑢. We also

compare our results to those produced by the baseline gradient

estimator described in Section 3.3.

(a) Analytical (b) Baseline (c) Ours (1.0) (d) Ours (100)
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Fig. 6. Estimation of directional derivatives for an analytically defined pure
Neumann problem. The baseline WoSt estimator (Section 3.3) in column (b)
exhibits high variance and bias, especially near the boundary, with walks
truncated after a fixed number of steps (here, 128). In contrast, using our
method with the reflectance threshold 𝜌max = 1 in column (c) yields more
accurate results for the same compute budget. Larger thresholds values,
such as 𝜌max = 100 in column (d), lead to higher noise.

6.1.1 Derivative Estimation For Pure Neumann Problems. As dis-
cussed in Section 3.2.3, the standard WoSt estimator faces funda-

mental challenges in pure Neumann settings. Walks lack natural

termination criteria, and practical fixes such as truncating walks

after a fixed number of steps or applying Tikhonov regularization

introduce bias. In addition, the baseline gradient estimator differen-

tiates a kernel that is singular on the boundary (Equation 6), leading

to elevated variance and instability in nearby regions (Figure 6(b)).

Our method avoids these pitfalls by reformulating the direc-

tional derivative as a boundary integral over a star-shaped region,

weighted by a reflectance function (Equation 9). This formulation

eliminates the need to explicitly evaluate singular kernels and en-

ables unbiased walk termination via Russian roulette (Section 4.2).

As a result, our estimator consistently achieves lower variance than

the baseline throughout the domain, including near the boundary,

and delivers higher accuracy at comparable computational cost.

Figure 6(d) illustrates that choosing a reflectance threshold 𝜌max

greater than 1, which corresponds to a larger star-shaped radius,

results in higher noise.

6.1.2 Derivative Estimation for Mixed Dirichlet–Neumann Condi-
tions. For problems with mixed boundary conditions, we follow the

approach described in Section 4.3: when a random walk enters the

𝜀-shell around a Dirichlet boundary, we launch a secondary walk to

estimate the normal derivative on 𝜕ΩD, following Yu et al. [2024].

Although the baseline estimator can terminate walks upon reach-

ing 𝜕ΩD, it still exhibits high variance near both boundary types.

This effect is especially pronounced near Neumann boundaries,

where walks tend to be significantly longer. The resulting dispar-

ity in walk lengths leads to uneven variance across the domain, as

ACM Trans. Graph., Vol. 44, No. 6, Article 253. Publication date: December 2025.



253:10 • Zihan Yu, Rohan Sawhney, Bailey Miller, Lifan Wu, and Shuang Zhao

(a) Baseline (b) Ours

2

-2

Dirichlet Neumann

5

-5

Dirichlet Neumann

Fig. 7. Directional derivative estimation under mixed boundary conditions.
Walks terminate upon reaching the Dirichlet boundary, resulting in shorter
trajectories than in the pure Neumann case. Nonetheless, the baseline esti-
mator remains inefficient near the Neumann boundary, where our method
yields lower variance for the same compute budget.

shown in Figure 7. Our method outperforms the baseline, achieving

lower variance in equal-time.

6.1.3 Potential Flow Simulation. As a more challenging test case,

Figure 1 shows a potential flow simulation inside a bounding box

with marine life spanning a wide range of spatial scales. The po-

tential field 𝑢 is governed by the Laplace equation with prescribed

Neumann boundary conditions: an inflow condition 𝜕𝑛𝑢 = −1 is ap-

plied to the upstream face of the box, an outflow condition 𝜕𝑛𝑢 = 1

to the downstream face, and zero Neumann conditions 𝜕𝑛𝑢 = 0 to

the remaining faces and the marine life, modeled as a triangle mesh

with 337,744 primitives. SNCH construction on the CPU required

1.4 seconds. We traced 100 streamlines, each with 100 points and

1,000 walks per point, for a total runtime of just under two hours.

Unlike traditional PDE solvers requiring volumetric discretiza-

tions adapted to the finest geometric features, our method can esti-

mate the gradient field at arbitrary resolutions, enabling localized

streamline tracing across multiple scales. Each component–𝜕𝑥𝑢, 𝜕𝑦𝑢,

and 𝜕𝑧𝑢–is estimated independently with our derivative estimator,

while the baseline computes all three simultaneously in a single

walk. Even so, our approach yields more robust derivatives and

higher-quality streamlines under equal-time constraints. As shown

in Figure 1, the streamlines curve smoothly around the marine life,

as expected in potential flow.

6.2 Reconstructing Solutions to Pure Neumann Problems
A defining feature of pure Neumann problems is that their solutions

are unique only up to an additive constant. This non-uniqueness

(a) Analytical (b) Direct Path

p
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(c) Indirect Path (d) Error Plot
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Fig. 8. Top row: To reconstruct the solution to a pure Neumann problem,
we first fix its value at a single point in the domain. The estimated results
then match the analytical reference pointwise, up to an additive constant
anywhere in the domain (inset). Bottom row: In regions not directly reachable
from the pinned point 𝐴, we can recover the solution by chaining multiple
line integrals, e.g., from 𝐴 to 𝐵, then from 𝐵 to all other points.

poses a fundamental challenge for the original WoSt method [Sawh-

ney et al. 2023], which aims to estimate the solution directly. We

take a different approach: since derivatives remain uniquely defined,

we reconstruct the solution by integrating its gradient along paths

originating from an arbitrary reference point. Practical advantages

of our derivative estimator, such as unbiased early termination of

walks, carry over naturally to this reconstruction scheme.

To reconstruct the solution at a query point 𝑝 ∈ Ω, we first select
a reference point 𝑝0 in the domain and fix the solution value there,

typically setting 𝑢 (𝑝0) = 0 for simplicity. The solution at 𝑝 is then

recovered by integrating the gradient along a path x from 𝑝0 to 𝑝:

𝑢 (𝑝) = 𝑢 (𝑝0) +
∫ 𝑝

𝑝0

∇𝑢 (x) · dx. (25)

In Figure 8(b), we encode the integration path with linear segments

and uniformly sample it to evaluate directional derivatives along the

direction from 𝑝0 to 𝑝 . This reconstruction accurately recovers the

solution across the domain, matching the ground-truth analytical

function up to an additive constant (shown in the inset).

More generally, the integration path between the reference and

query points can be arbitrary; any parameterized curve suffices. To

validate this path independence, Figure 8(c) shows solutions recon-

structed with an indirect path consisting of two linear segments,

for simplicity. For regions not directly visible from the pinned point

𝐴, the path is routed through an intermediate point 𝐵. The recon-

structed values again match the reference solution up to an additive

ACM Trans. Graph., Vol. 44, No. 6, Article 253. Publication date: December 2025.



Robust Derivative Estimation with Walk on Stars • 253:11

(a) Analytical (b) Tikhonov reg. (𝜎 = 0.1) (c) Tikhonov reg. (𝜎 = 10) (d) Ours (e) Error Plot
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Fig. 9. Our reconstruction of the pure Neumann problem (d) exhibits lower noise than a Tikhonov regularization with a small absorption coefficient (b), and
reduced bias compared to a large absorption coefficient (c). In (d), the solution is computed by integrating estimated derivatives along linear segments from
each query point to its nearest visible reference point (red dot). The insets show pointwise errors relative to the analytical solution.

constant, though longer paths incur slightly higher variance. De-

signing a principled scheme to automatically connect query points

or regions of interest to the pinned point via parameterized curves

remains an open direction for future work.

Figure 9 highlights the practical advantages of our method over

the original WoSt estimator, which relies on a Tikhonov regular-

ization to handle pure Neumann problems. As discussed in Section

3.2.3, small absorption coefficients preserve accuracy but amplify

noise, while larger coefficients reduce variance at the cost of signif-

icant bias. In contrast, our approach avoids this tradeoff entirely,

achieving both low noise and low bias in the reconstructed solution.

6.3 Computing Divergence-Free Vector Fields
Helmholtz decomposition is a standard technique for computing

divergence-free vector fields in physical simulations [Bhatia et al.

2013; Nabizadeh et al. 2021]. It expresses an arbitrary vector field b
as the sum of a divergence-free component F and the gradient of a

scalar potential 𝑢, i.e., b = F+∇𝑢. The divergence-free component is

then recovered as F = b−∇𝑢, where 𝑢 satisfies the Poisson equation

Δ𝑢 = ∇ · b. We perform this decomposition for pure Neumann

problems by directly estimating the gradient ∇𝑢, thereby recovering
F without explicitly solving for 𝑢.

Magnetostatics. A practical instance of a Helmholtz decomposi-

tion arises in the design of industrial magnets [Wolfram Research

2025]. In this setting, the magnetic flux density is given by B =

𝜇0 (H +M), where 𝜇0 is the vacuum permeability, M is the magneti-

zation of a permanent magnet, andH is the demagnetizing field. The

fieldH is derived from amagnetic scalar potential𝜙𝑚 viaH = −∇𝜙𝑚 ,

where 𝜙𝑚 satisfies the Poisson equation Δ𝜙𝑚 = −∇ ·M.

In practice, the magnetization M is often discontinuous across

the surface of a magnet, denoted 𝜕M. This discontinuity leads to a

decomposition of the source term −∇ ·M, representing the effective

magnetic charge density, into two physically distinct components: a

volume charge density 𝜌𝑚 = −∇·M inside the magnet, and a surface

charge density 𝜎𝑚 = M ·𝒏 concentrated at the interfaces. The source

term in the integral equation for 𝜙𝑚 (Equation 3) therefore sums

contributions from these distinct charge distributions:∫
St

𝐺B (𝑥,𝑦)𝜌𝑚 (𝑦)d𝑦 +
∫

St∩𝜕M
𝐺B (𝑥,𝑦)𝜎𝑚 (𝑦)d𝑦. (26)

Similarly, the source integral for the directional derivative 𝜕𝑣𝜙𝑚 in

Equation 9 becomes:∫
St

𝐺B (𝑥,𝑦)𝜕𝑣𝜌𝑚 (𝑦)d𝑦 +
∫

St∩𝜕M
𝜕𝑣𝐺

B (𝑥,𝑦)𝜎𝑚 (𝑦)d𝑦. (27)

Field Estimation. We estimate the integrals above using the same

sampling strategies as those employed for the source and Neu-

mann integrals, respectively, in Sawhney et al. [2023, Sections 4.5

& 4.6]. We validate our solver on a Halbach array, a special con-

figuration of permanent magnets that enhances the magnetic field

 (a) Halbach Array  (b) M (input)

 (c) B (reference)  (d) B (ours)

on one side while nearly can-

celing it on the other. In

the inset, the array is en-

closed within a large bound-

ing sphere with zero Neu-

mann boundary conditions.

Using the specified magneti-

zation pattern (b) of the ar-

ray as input, we compute the

resulting magnetic field (d),

which closely matches the

reference field lines (c) cal-

culated using Magpylib [Ortner and Coliado Bandeira 2020].

In Figure 10, we compute the magnetic flux density in an indus-

trial magnetic bearing [COMSOL 2025] with extremely fine-scale

surface imperfections. The magnet is represented as a triangle mesh

with 1,189,664 primitives. Building a bounding volume hierarchy

for point sampling of the source integral (Equation 27) required 2.5

seconds, while SNCH construction for the bounding sphere around

the magnet took only a few milliseconds. We then sampled approxi-

mately 27,000 points along the streamlines, performing 10,000 walks

per point, for a total runtime of about two minutes.

Finite element methods face significant challenges in this setting,

as standard tetrahedral meshing tools like TetGen [Si 2015] cannot

robustly process non-manifold or self-intersecting surface meshes.

While mesh repair tools such as MeshFix [Attene 2010] can cor-

rect connectivity issues, they often distort the geometry of critical

features–such as cracks–in the process. Even after repair, TetGen

fails to generate a valid volumetric mesh for this magnetic bear-

ing. More robust meshing algorithms like fTetWild [Hu et al. 2020]

handle degenerate inputs more effectively but still fail to capture
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magnetization M input boundary mesh tetrahedral mesh ( TetWild)

divergence-free field B (ours) magnitude of field B (ours)

Fig. 10. Magnetic flux density in industrial magnetic bearings. Our Monte
Carlo method accurately computes the divergence-free field B in the far field
while also resolving fine-scale variations near surface defects such as cracks
(bottom row). In contrast, finite element meshing (here using fTetWild with
default settings) may fail to capture such geometric detail (top row, right),
leading to inaccurate simulation results in critical regions.

the intricate crack geometry with default settings (Figure 10, top

right). Although fTetWild’s epsilon parameter can be reduced to

resolve smaller features, it must be set at or below the smallest geo-

metric scale in the domain, potentially leading to excessive memory

consumption and high computational cost.

Boundary element methods, which avoid volumetric meshing

altogether, have seen substantial performance improvements in

recent years [Chen et al. 2024, 2025], but they do not apply directly

to the source-dominated problem considered here. In contrast, our

Monte Carlo method sidesteps meshing challenges entirely and

resolves the magnetic field both near the crack and in the far field,

capturing fine-scale geometric detail with minimal preprocessing.

6.4 Gradient-Based Optimization of Neumann Boundaries
PDE-constrained shape optimization is central to inverse design

and simulation. While Monte Carlo solvers have only recently be-

gun to emerge for such problems, differentiable optimization with

Neumann boundaries has remained largely unexplored due to the

absence of reliable estimators for first- and second-order spatial

derivatives. This gap is particularly relevant in applications such as

magnetic field shaping, thermal insulation design, and structural

load redistribution, where Neumann conditions naturally model

fluxes, stresses, and applied forces. Our method introduces the first

tractable Monte Carlo strategy for estimating parameter derivatives

of a Poisson equation in this setting (Equation 7).

Problem setup. As a simple illustrative example, Figure 12 depicts

the optimization of a fish-shaped Neumann boundary 𝜕ΩN, parame-

terized by its position t and scale 𝑟 , i.e., 𝜋 = (t, 𝑟 ). The objective is to
match the solution𝑢 (𝑥, 𝜋) of a Poisson equation to prescribed target
values at a sparse set of measurement points (red dots), mimicking

the task of tuning an insulating region embedded in a conductive

(a) Solution (b) 2nd order normal derivative
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Fig. 11. We evaluate our estimator for the second-order normal deriva-
tive 𝜕2

𝑛𝑢 on a PDE with a known analytical solution. The plot shows the
estimated mean and confidence interval for a fixed evaluation point as the
number of samples increases.
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Fig. 12. Top row: We optimize the position and scale of a fish-shaped
Neumann boundary by minimizing an 𝐿2 loss between the solution 𝑢 to
a Poisson equation and target values specified at a sparse set of points
in the domain (red dots). The optimized result, obtained using 100 walks
per iteration to estimate the spatial derivatives of 𝑢, is shown on the top
right (c). Bottom row: Ablation study on the number of walks used per
iteration to estimate spatial derivatives of 𝑢. We plot the optimization loss
and parameter error for 1, 10, and 100 such walks, while keeping the number
of walks for the parameter derivatives ¤𝑢 fixed.

material. For this problem, we minimize the shape functional used

by Miller et al. [2024a, Section 4],

L(𝜋) =
∫
Ω (𝜋 )

M(𝑥)L(𝑢 (𝑥, 𝜋)) d𝑥, (28)

where L is a differentiable loss function andM is amask that localizes

the objective to regions of interest. In our experiment, we use an L2

loss L(𝑢 (𝑥, 𝜋)) = ∥𝑢 (𝑥, 𝜋) − 𝑢target (𝑥)∥2. The mask M is defined as

a collection of Dirac delta functions at discrete measurement points

𝑥𝑖 , reducing the integral to the discrete sum

S(𝜋) =
∑︁
𝑖



𝑢 (𝑥𝑖 , 𝜋) − 𝑢target (𝑥𝑖 )


2

. (29)

ACM Trans. Graph., Vol. 44, No. 6, Article 253. Publication date: December 2025.



Robust Derivative Estimation with Walk on Stars • 253:13

Minimizing S(𝜋) with respect to the parameters 𝜋–and thereby

optimizing the Neumann boundary they define–requires evaluating

the parameter derivatives ¤𝑢 := 𝜕𝑢/𝜕𝜋 . These derivatives quantify
how the solution responds to infinitesimal changes in the boundary

geometry, and are essential for parameter updates via stochastic

gradient descent. In Figure 12, we fix the outer Dirichlet boundary

𝜕ΩD (the circle) and optimize only the interior fish-shaped boundary

with zero Neumann conditions, 𝜕𝑛𝑢 = 0. However, our method

naturally extends to problems involving both boundary types.

Estimation Strategy. In principle, the parameter derivatives ¤𝑢 can

be computed by applying the standard WoSt estimator to the dif-

ferential Poisson equation in Equation 7. However, the Neumann

conditions for this PDE involve spatial derivatives of the primal so-

lution 𝑢–specifically, ∇𝑢 and 𝜕2

𝑛𝑢–which must be estimated on the

fly. A naive approach would launch nested random walks at every

step of a differential walk to compute these quantities, using our

directional and second-order derivative estimators from Sections 4.1

and 4.4, respectively. To avoid the resulting combinatorial explosion

in sampling cost, we instead propose a "two-pass" algorithm:

(1) Precomputation Pass: We first uniformly sample points on

the Neumann boundary 𝜕ΩN and estimate ∇𝑢 and 𝜕2

𝑛𝑢 using our

derivative estimators–Figure 11 confirms reliable convergence

of the latter. We cache and index these estimates (e.g., with a

𝑘-d tree) for fast retrieval.

(2) Differential Pass: We then solve for ¤𝑢 using WoSt, retriev-

ing cached spatial derivatives on 𝜕ΩN that fall within the star-

shaped region associated with the current walk location. This

eliminates the need for costly nested walks during estimation.

Figure 12 demonstrates successful convergence of our example

inverse problem: the optimized Neumann boundary closely matches

the target position and radius. To assess the impact of noise in the

spatial derivative estimates, we vary the number of walks used per

iteration to estimate them (1, 10, 100), while keeping the number of

walks for the parameter derivatives ¤𝑢 fixed. The results show that

optimization can diverge when spatial derivative estimates are too

noisy (e.g., with only one walk), but typically succeeds when the

noise level is more moderate.

More broadly, the convergence of an inverse solver depends on

many factors beyond gradient quality, including the choice of loss

function, regularization or preconditioning strategies, optimization

algorithm, and learning rate schedule. Although our demonstration

involves a simple geometry with few parameters, it highlights the

feasibility of Monte Carlo–based gradient estimation as a founda-

tion for scalable, gradient-driven design with parameterized Neu-

mann boundary constraints. Extending this approach to complex

geometries and higher-dimensional parameter spaces is an impor-

tant direction for future work.

6.5 Sensitivity of Derivative Estimation to Sharp Corners
Our method builds on the key insight that, just as the solution 𝑢 to a

Poisson equation can be estimated using random walks, so too can

its directional derivative 𝜕𝑣𝑢. This idea has also been explored more

broadly in the context of PDE-constrained optimization [Yılmazer

(a) Sharp Corners (b) Smooth boundary

Fig. 13. Left : Our method produces inaccurate derivative estimates in the
presence of sharp corners. This limitation is evident in the potential flow
simulation as streamlines fail to correctly curve around the boundary. Right :
When the corners are rounded, the estimated gradients yield streamlines
that closely match the expected flow.

et al. 2022; Yu et al. 2024; Miller et al. 2024a], and it forms the

foundation of our approach.

However, while the standard WoSt estimator exhibits stable con-

vergence when estimating 𝑢 on polyhedral domains, our method–

which directly estimates 𝜕𝑣𝑢–can struggle in the vicinity of sharp

corners or edges. This is because on piecewise-flat domains such as

triangle meshes, the solution typically remains continuous up to the

boundary, but its directional derivatives can become unbounded–a

phenomenon known as the corner singularity problem [Grisvard

2011]. This issue is especially pronounced at reentrant (concave)

corners, where abrupt changes in boundary orientation induce steep

gradients in the solution. Derivative estimates are particularly sensi-

tive in such regions, as differentiation tends to amplify irregularities

in the underlying solution.

Moreover, the boundary integral equation introduced in Section

4.1 to estimate 𝜕𝑣𝑢 does not account for geometric singularities

inside star-shaped regions, leading to biased derivative estimates

near sharp features. Figure 13 illustrates this limitation in a potential

flow simulation: sharp corners (left) produce streamlines that exhibit

physically implausible behavior, failing to bend naturally around

the obstacle with zero Neumann boundary conditions. In contrast,

rounding the corners (right) restores smooth flow patterns that align

with physical expectations.

The challenges posed by geometric singularities are not unique

to our method. In the finite element literature, reentrant corners

are known to degrade accuracy, and are typically mitigated through

partial remedies such as adaptive mesh refinement or higher-order

basis functions. A promising direction for improving our estimator

is to mollify the boundary geometry near concave corners, thereby

reducing singular behavior and improving derivative accuracy.

7 CONCLUSION
We introduced a Monte Carlo framework based on the walk on

stars algorithm for estimating spatial and parameter derivatives of

Poisson equations. Our method is particularly effective in Neumann-

dominated problems, unlocking new capabilities including prin-

cipled solution reconstruction, divergence-free field estimation,

and shape optimization with parametrically defined boundaries.

At the same time, it inherits limitations of the underlying WoSt

ACM Trans. Graph., Vol. 44, No. 6, Article 253. Publication date: December 2025.
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estimator–most notably, slower progress near concave boundary

regions, where random walks take smaller steps. We expect future

improvements to the base algorithm to extend naturally to our deriv-

ative estimators. Future directions include accelerating walks near

concave boundaries, reducing bias through boundary mollification,

and extending the framework to broader classes of elliptic PDEs.
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A DERIVATION OF THE DIRECTIONAL DERIVATIVE BIE
FOR THE NEUMANN BOUNDARY

Starting from Equation 8, we derive the integral expression for the

directional derivative 𝜕𝑣𝑢 in Equation 9. The primary challenge lies

in eliminating the second-order mixed derivative 𝜕2

𝑛𝑣𝑢 in Equation

8. Our derivation is divided into four steps:

A.1 Normal And Tangential Decomposition
We decompose 𝜕2

𝑛𝑣𝑢 on 𝜕St𝑁 into normal and tangential compo-

nents,

𝜕2

𝑛𝑣𝑢 = 𝜕2

𝑛𝑢 (𝒗 · 𝒏) + 𝐷2𝑢 · 𝒏 · 𝒗Γ, (30)

where 𝐷2
represents the Hessian.

A.2 Rewriting the Tangential Component
We apply the identity [Henrot and Pierre 2018, page 227]

𝐷2𝑢 · 𝒏 · 𝒗Γ = ∇Γ𝜕𝑛𝑢 · 𝒗Γ − ∇𝑢 · (𝒗 · ∇Γ𝒏) (31)

along with the relations 𝒗 · ∇Γ𝒏 = ∇Γ (𝒗 · 𝒏) (as 𝒗 is constant) and

𝜕𝑛𝑢 = ℎ (the prescribed Neumann condition). This yields

𝜕2

𝑛𝑣𝑢 = 𝜕2

𝑛𝑢 (𝒗 · 𝒏) + ∇Γℎ · 𝒗Γ − ∇𝑢 · ∇Γ (𝒗 · 𝒏). (32)

A.3 Rewriting the Normal Component
We apply the Laplacian identity [Henrot and Pierre 2018, Equation

5.59]

Δ𝑢 = ΔΓ𝑢 + 𝐻𝜕𝑛𝑢 + 𝜕2

𝑛𝑢 = −𝑓 , (33)

and substitute 𝜕2

𝑛𝑢 = −(𝑓 + ΔΓ𝑢 + 𝐻𝜕𝑛𝑢) into Equation 32 to get

𝜕2

𝑛𝑣𝑢 = −(𝑓 + ΔΓ𝑢 + 𝐻ℎ) (𝒗 · 𝒏) + ∇Γℎ · 𝒗Γ − ∇𝑢 · ∇Γ (𝒗 · 𝒏). (34)

A.4 Integration by Parts
Finally, we substitute the right hand side of Equation 34 into the sur-

face integral

∫
𝜕StN

𝐺B𝜕2

𝑛𝑣𝑢, and apply integration by parts [Henrot

and Pierre 2018, Equation 5.64] to the term involving ΔΓ𝑢:∫
𝜕StN

𝐺B (𝒗·𝒏)ΔΓ𝑢 = −
∫
𝜕St𝑁

[
(𝒗 · 𝒏)∇Γ𝐺B · ∇𝑢 +𝐺B∇𝑢 · ∇Γ (𝒗 · 𝒏)

]
.

(35)

Collecting terms then yields∫
𝜕StN

𝑃B

(
𝒗Γ − (𝒗 · 𝒏)

∇Γ𝐺B

𝑃B

)
· ∇𝑢︸                           ︷︷                           ︸

|𝝆𝑣 |𝜕𝝆𝑢

+
∫
𝜕StN

𝑃B (𝒗 · 𝒏)ℎ︸  ︷︷  ︸
𝜇𝑣

−
∫
𝜕StN

𝐺B
[
𝜕𝒗Γℎ − (𝒗 · 𝒏)𝐻ℎ − (𝒗 · 𝒏) 𝑓

]︸                                 ︷︷                                 ︸
𝜂𝑣

,

(36)

which matches all the components of the BIE on 𝜕StN that we use

in the main text.

B DERIVATION OF THE DIRECTIONAL DERIVATIVE BIE
FOR THE DIRICHLET BOUNDARY

We derive an analogous BIE to Equation 36, but this time for a star-

shaped region St that contains parts of the Dirichlet boundary 𝜕ΩD.

As in Appendix A, the challenge lies in handling the second-order

mixed derivative 𝜕2

𝑛𝑣𝑢 in the integral∫
𝜕St𝐷

𝐺B𝜕2

𝑛𝑣𝑢. (37)

We begin with the identity

𝜕2

𝑛𝑣𝑢 = −(𝑓 +ΔΓ𝑢 +𝐻𝜕𝑛𝑢) (𝒗 · 𝒏) +∇Γ𝜕𝑛𝑢 ·𝒗Γ −∇𝑢 · ∇Γ (𝒗 · 𝒏) (38)
from Equation 34, where the normal derivative 𝜕𝑛𝑢 is no longer

known on 𝜕StD. We apply integration by parts to the term involving

∇Γ𝜕𝑛𝑢 · 𝒗Γ in the surface integral above to get∫
𝜕StD

𝐺B∇Γ𝜕𝑛𝑢 · 𝒗Γ = −
∫
𝜕StD

[
∇Γ𝐺B · 𝒗Γ𝜕𝑛𝑢 −𝐺B𝐻𝒗 · 𝒏𝜕𝑛𝑢

]
.

(39)

Collecting terms, we obtain the final expression for the directional

derivative 𝜕𝑣𝑢 on 𝜕StD:

𝜕𝑣𝑢 =

∫
𝜕StD

𝑃B

(
(𝒗 · 𝒏) + ∇Γ 𝐺

B

𝑃B

· 𝒗Γ
)

︸                       ︷︷                       ︸
|𝝆𝑣 |

𝜕𝑛𝑢

+
∫
𝜕StD

𝑃B ∇Γ𝑔 · 𝒗︸  ︷︷  ︸
𝜇𝑣

−
∫
𝜕StD

𝐺B

[
− (𝒗 · 𝒏) ΔΓ𝑔 − ∇Γ (𝒗 · 𝒏) · ∇Γ𝑔 − (𝒗 · 𝒏) 𝑓

]
︸                                                          ︷︷                                                          ︸

𝜂𝑣

.

(40)

C DERIVATION OF THE EDGE INTEGRAL
On polyhedral domains, edges introduce Dirac delta contributions

in 𝐻 and 𝜕𝑣Γℎ within 𝜂𝑣 (Equation 12), producing singular terms

that must be treated explicitly. We derive Equation 22 by isolating

the singular part of the second integral in Equation 9, namely∫
𝜕St𝑁

𝐺B
[
𝜕𝑣Γℎ − (𝒗 · 𝒏)𝐻ℎ

]
, (41)

where we have omitted the smooth term −(𝒗 · 𝒏) 𝑓 for clarity.
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C.1 Mollification of Edges
We mollify an edge 𝑒 (with face normals 𝒏±) by replacing it with a

smooth cylindrical surface 𝑆𝜀 of radius 𝜀 > 0, yielding a𝐶2
boundary

where 𝜕𝑣Γℎ − (𝒗 · 𝒏)𝐻ℎ is well-defined and surface calculus applies.

For a constant vector field 𝒗, we can employ the surface diver-

gence identity [Henrot and Pierre 2018, Equation 5.55]:

∇Γ · 𝒗Γ = −(𝒗 · 𝒏)𝐻, (42)

where 𝒗Γ = 𝒗 − (𝒗 · 𝒏)𝒏 is the tangential component of 𝒗 on the

surface. Multiplying this identity by the Neumann data ℎ and rear-

ranging, we obtain

(𝒗 · 𝒏)𝐻ℎ = −∇Γ · (ℎ𝒗Γ) + ∇Γℎ · 𝒗Γ . (43)

Using 𝜕𝑣Γℎ = ∇Γℎ · 𝒗Γ , the terms cancel in Equation 41, leaving∫
𝑆𝜀

𝐺B∇Γ · (ℎ𝒗Γ) d𝐴, (44)

C.2 Surface Divergence Theorem
Applying the surface divergence theorem to Equation 44 gives∫

𝑆𝜀

𝐺B∇Γ · (ℎ𝒗Γ)d𝐴 =

∮
𝜕𝑆𝜀

𝐺Bℎ(𝒗Γ · 𝒕)d𝑙, (45)

where 𝒕 is the unit tangent vector to 𝜕𝑆𝜀 .

The boundary 𝜕𝑆𝜀 has two circular arcs (radius 𝜀) and two seg-

ments on the faces. As 𝜀 � 0, the arcs vanish and the segments

collapse to the edge 𝑒 . On them, 𝒗Γ · 𝒕 = 𝒗 · 𝒕±; taking the limit

(allowing different Neumann data on each side) yields∫
𝑒

𝐺B
[
(𝒗 · 𝒕+)ℎ+ + (𝒗 · 𝒕−)ℎ−

]
d𝑙 . (46)

Summing over all edges gives the edge integral in Equation 22.

D MITIGATING SINGULAR KERNELS WITH CONTROL
VARIATES

Monte Carlo estimators of boundary integrals can have high vari-

ance when kernels are singular near 𝑥 . This affects the Neumann

boundary integral (Equation 3), the edge integral (Equation 22),

and the second-order normal derivative (Equation 16). We reduce

variance with control variates: subtract a locally matching singular

surrogate and add back an equivalent smooth integral.

D.1 Neumann Boundary Integral
The Green’s function in

∫
𝜕St𝑁

𝐺B (𝑥, 𝑧)𝜂𝑣 (𝑧)d𝑧 is singular as 𝑧�𝑥 .

To address it, we introduce a control variate based on a constant

vector field 𝒖̂. We define this field such that its normal component

matches the singular term: 𝒖̂ · 𝒏(𝑥) = 𝜂𝑣 (𝑥), where 𝑥 is the point

on 𝜕St𝑁 closest to 𝑥 . It induces a linear potential function 𝜙 (𝑧) =
𝒖̂ · 𝑧, which satisfies Laplace’s equation. Therefore, 𝜙 satisfies the

boundary integral equation from Equation 3:

𝜙 (𝑥) =
∫
𝜕St

𝑃B (𝑥, 𝑧)𝜙 (𝑧)d𝑧 −
∫
𝜕St

𝐺B (𝑥, 𝑧) (𝒖̂ · 𝒏(𝑧))d𝑧.

Using

∫
𝜕St

𝑃B (𝑥, 𝑧)d𝑧 = 1 gives the identity:∫
𝜕St

𝐺B (𝑥, 𝑧) (𝒖̂ · 𝒏(𝑧))d𝑧 =

∫
𝜕St

𝑃B (𝑥, 𝑧)𝒖̂ · (𝑧 − 𝑥)d𝑧. (47)

Subtract

∫
𝜕St𝑁

𝐺B (𝑥, 𝑧) (𝒖̂ ·𝒏(𝑧))d𝑧 and add back its equivalent from
Equation 47:∫

𝜕St𝑁

𝐺B (𝑥, 𝑧)𝜂𝑣 (𝑧)d𝑧 =

∫
𝜕St𝑁

𝐺B (𝑥, 𝑧) (𝜂𝑣 (𝑧) − 𝒖̂ · 𝒏(𝑧))d𝑧

+
∫
𝜕St

𝑃B (𝑥, 𝑧)𝒖̂ · (𝑧 − 𝑥)d𝑧.
(48)

Then (𝜂𝑣 − 𝒖̂ · 𝒏) � 0 as 𝑧 � 𝑥 , which reduces the impact of the

singularity of 𝐺B
, and 𝑃B

can be importance sampled.

D.2 Edge Integral
The edge integral in Equation 22 also suffers from high variance due

to the singularity of 𝐺B (𝑥, 𝑧). We introduce a control variate using

a constant vector field 𝒖̂ chosen such that 𝒖̂ · 𝒏± (𝑥) = ℎ± (𝑥), where
ℎ± (𝑥) are the prescribed Neumann data on the faces adjacent to the

edge, and 𝑥 is the point on the edge 𝜕St
E

N
closest to 𝑥 . This involves

subtracting and adding the term:∫
𝜕St

E

N

𝐺B (𝑥, 𝑧)
[
(𝒖̂ · 𝒏− (𝑧)) (𝒗 · 𝒕− (𝑧)) + (𝒖̂ · 𝒏+ (𝑧)) (𝒗 · 𝒕+ (𝑧))

]
d𝑙 .

(49)

Transform this using integration by parts for 𝜙 (𝑧) = 𝒖̂ · 𝑧 on 𝜕StN:∫
𝜕St

E

N

𝐺B (𝑥, 𝑧)
∑︁
±
(𝒖̂ · 𝒏± (𝑧)) (𝒗 · 𝒕± (𝑧))d𝑧

=

∫
𝜕StN

(𝒗 · 𝒏(𝑧)) (∇Γ𝐺 (𝑥, 𝑧) · 𝒖̂)d𝑧.
(50)

The edge integral becomes:∫
𝜕St

E

N

𝐺B (𝑥, 𝑧)
∑︁
±

[
(ℎ± (𝑧) − 𝒖̂ · 𝒏± (𝑧)) (𝒗 · 𝒕± (𝑧))

]
d𝑧

+
∫
𝜕StN

(𝒗 · 𝒏(𝑧)) (∇Γ𝐺 (𝑥, 𝑧) · 𝒖̂)d𝑧.
(51)

Now (ℎ± − 𝒖̂ · 𝒏±)�0 near 𝑥 , regularizing the singularity and the

surface term can reuse the direction samples from the primal walk.

D.3 Second-Order Normal Derivative Integral
Estimating 𝜕2

𝑛𝑢 (𝑥) also suffers from singular 𝜕𝑛𝑥 𝑃
B
and 𝜕𝑛𝑥𝐺

B
. Fol-

lowing Yu et al. [2024, Eq. 26], we use control variates from ℎ(𝑥)
and 𝜕𝑛𝑥 𝑓 (𝑥):∫

𝜕B(𝑐,𝑅)
(𝜕𝑛𝑥𝑢 (𝑧) − ℎ(𝑥))𝜕𝑛𝑥 𝑃B (𝑥, 𝑧)d𝑧

+
∫

B(𝑐,𝑅)
(𝜕𝑛𝑥 𝑓 (𝑦) − 𝜕𝑛𝑥 𝑓 (𝑥))𝜕𝑛𝑥𝐺B (𝑥,𝑦)d𝑦 + 𝜕𝑛𝑥 𝑓 (𝑥)

𝑅

𝑁

(52)

Here B(𝑐, 𝑅) is the off-centered ball with kernels 𝑃B,𝐺B
and𝑁 the di-

mension. The differences (𝜕𝑛𝑥𝑢 (𝑧) −ℎ(𝑥)) and (𝜕𝑛𝑥 𝑓 (𝑦) −𝜕𝑛𝑥 𝑓 (𝑥))
vanish as the point approaches 𝑥 , alleviating the singularities and

improving the robustness of the derivative estimator for Neumann

shape optimization.
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