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Fig. 1. We present an analytic formula for spherical harmonic (SH) gradients from uniform polygonal area lights, and show how this new theoretical result
enables scaling Precomputed Radiance Transfer (PRT) to hundreds of area lights. We first compute the lighting SH coefficients and gradients on a sparse 3D
grid. To evaluate SH coefficients for any intermediate point (vertex), we exploit SH gradients and use accurate Hermite interpolation. Here we render a glossy
scene with 713 polygonal (triangular) lights and 1.3M polygons at 36fps. Each light transforms independently (in terms of color, location, orientation etc.),
enabling the appearance of textured lights or more complex patterns, and causing significant changes in glossy highlights (compare left and right images).

Recent work has developed analytic formulae for spherical harmonic (SH)

coefficients from uniform polygonal lights, enabling near-field area lights to

be included in Precomputed Radiance Transfer (PRT) systems, and in offline

rendering. However, the method is inefficient since coefficients need to be

recomputed at each vertex or shading point, for each light, even though

the SH coefficients vary smoothly in space. The complexity scales linearly

with the number of lights, making many-light rendering difficult. In this

paper, we develop a novel analytic formula for the spatial gradients of the
spherical harmonic coefficients for uniform polygonal area lights. The result is
a significant generalization, involving the Reynolds transport theorem to

reduce the problem to a boundary integral for whichwe derive a new analytic

formula, showing how to reduce a key term to an earlier recurrence for SH

coefficients. The implementation requires only minor additions to existing

code for SH coefficients. The results also hold implications for recent efforts

on differentiable rendering. We show that SH gradients enable very sparse

spatial sampling, followed by accurate Hermite interpolation. This enables
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scaling PRT to hundreds of area lights with minimal overhead and real-time

frame rates. Moreover, the SH gradient formula is a new mathematical result

that potentially enables many other graphics applications.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: analytic gradients, spherical harmonics,

area lighting, differentiable rendering

ACM Reference Format:
Lifan Wu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. 2020. An-

alytic Spherical Harmonic Gradients for Real-Time Rendering with Many

Polygonal Area Lights. ACM Trans. Graph. 39, 4, Article 1 (July 2020),

14 pages. https://doi.org/10.1145/3386569.3392373

1 INTRODUCTION
In this paper, we address a fundamental mathematical question,

deriving an analytic formula for the spatial gradients of spherical

harmonic (SH) coefficients from a uniform polygonal area light.

While both area lights and spherical harmonics are widely used in

rendering, to our knowledge, there has been no previous work on

finding analytic SH gradients for them. We believe the result has

implications for many problems in rendering and beyond.

Our immediate practical motivation is for real-time rendering

with precomputed radiance transfer (PRT) [Sloan et al. 2002]. PRT

and SH lighting enable dynamic low-frequency environments with

realistic highlights and real-time shading, including soft shadows.

Hence, they are widely used in real-time applications like games

and even in offline rendering [Pantaleoni et al. 2010]. However, the
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PRT method has often been limited to distant environment maps,

since area light SH coefficients differ at each vertex on the object.

Recent work [Wang and Ramamoorthi 2018] has derived an ana-

lytic formula for SH coefficients for a uniform polygonal area light

(building on earlier work on irradiance tensors [Arvo 1995; Sny-

der 1996]), demonstrating area lights in PRT. A similar approach

has also been applied to SH integrals for both offline and real-time

rendering [Belcour et al. 2018]. However, those methods require

computing the SH coefficients at each integration point (each ver-

tex in PRT), for each light, which precludes easily scaling to large

numbers of lights.

An important observation is that the light field from area lights,

and hence its SH coefficients, is smooth spatially. This suggests that

the spatial gradients of SH coefficients are a critical quantity. Although
gradients and differential methods have recently received significant

attention [Li et al. 2018; Zhang et al. 2019], there has so far been little

previouswork in analytically computing SH gradients (as opposed to

SH coefficients). One reasonmay be the challenge of generalizing the

SH coefficient derivation, which is already complex, with additional

complexity from computing derivatives along each spatial direction.

In this paper, we address this long-standing challenge and show

how gradient-based interpolation can enable very sparse spatial

sampling, and easy scaling to multiple light sources with minimal

overhead (see Fig. 1). Our specific contributions include:

Derivation of Analytic SH Gradient Formula. Our main contribu-

tion is the derivation of a novel analytic formula for SH gradients.

This is a new result, which is a significant generalization of that for

SH coefficients. In particular, we show how to reduce the problem

to a boundary integral (§4), where a key term can be reduced to an

earlier SH coefficient recurrence (§5). Our practical Algorithm 2 in

§6.1 is simple, requiring only a few simple modifications to existing

code for computing analytic SH coefficients.

Gradient-Based Interpolation. We demonstrate gradient-based in-

terpolation from a sparse set of samples. An overview of our method

is in Algorithm 1 in §6. We develop a Hermite cubic interpolant

that is consistent with the analytic gradients (§6.2 and Algorithm 4),

and more accurate than previous Taylor-series based numerical

approaches [Annen et al. 2004]. Even for rendering with one area

light source, we demonstrate a 2× speedup over explicit analytic

computation of SH coefficients at each vertex. Our major benefit is

for handling multiple area lights, where we can linearly accumulate

SH coefficients and gradients for all lights on a sparse grid with

minimal overhead, followed by gradient-based interpolation.

Efficient Real-Time Rendering with Multiple Area Lights. We imple-

ment our approach within a real-time PRT system. We can handle

hundreds of uniform polygonal area lights in real-time, which was not
previously possible (§7, Figs. 1,10,11). This approach also enables

easily breaking a high-resolution textured light source into uniform

polygonal luminaires, which can be handled with our method.

2 RELATED WORK
PRT and Spherical Harmonics. SH have been widely used in both

real-time and offline rendering, going back to the work by Cabral

et al. [1987]. In particular, they have widely been used in practice

for PRT [Sloan et al. 2002], enabling soft shadows and other light

transport effects. Approaches based on all-frequency relighting [Ng

et al. 2003] can be more accurate but have not gained widespread

practical adoption because of the high precomputation and stor-

age costs. Other analytic methods for area lights, such as the work

by Heitz et al. [2016], do not consider shadows. There have been

many subsequent developments in PRT; we describe only the clos-

est previous work and refer readers to a survey [Lehtinen 2007;

Ramamoorthi 2009] for a more thorough introduction.

Annen et al. [2004] proposed spherical harmonic gradients for

mid-range illumination, improving on simply interpolating a small

number of locations for incident illumination [Sloan et al. 2002].

However, they did not derive an analytic gradient formula, and

required 2D numerical integration over the area light source, with

complexity still scaling linearly with the number of lights. In §4

and Appendix C, we show that their result is essentially a different

parameterization; our approach enables reduction to a boundary

integral with an analytic form.

Zhou et al. [2005] introduced dynamic scenes and near-field lights

for all-frequency relighting. Using gradients enables sparser repre-

sentations, which in turn enable scaling with only a small overhead

to hundreds of lights, which was not previously possible. Since our

algorithm only pertains to the lighting, other benefits such as dy-

namic scenes, or any other PRT transport algorithm, can easily be

included. Other all-frequency area light methods include the wavelet

propagation approach of [Sun and Ramamoorthi 2009] which also

handles texture, but the results require approximations and some

operations like out-of-plane light rotation are not permitted. Their

method is again limited to a single or small number of lights.

Ren et al. [2006] break lights and geometry into spheres and use

spherical harmonic exponentiation to enable real-time soft shadows

in more complex dynamic scenes. However, the spherical approxi-

mation is not generally suitable for planar area lights (even using

multiple spheres is a poor approximation of a planar surface from

all directions). Moreover, analytic formulae are provided only for

sphere lights. Note that none of the above-mentioned papers com-

pute analytic spherical harmonic gradients, and this computation

may also benefit these approaches in the future.

Illumination Gradients. Irradiance and radiance caching [Ward

et al. 1988; Křivánek et al. 2005b, 2008] are important techniques for

global illumination. Greger et al. [1998] introduced the irradiance

volume to precompute and store the irradiance distribution function

in a volumetric grid. Shading at arbitrary points is computed by

trilinearly interpolating from the irradiance volume. In our work, we

precompute and store SH coefficients and gradients in the grid, and

perform more accurate Hermite interpolation using the gradients.

A series of works [Ward and Heckbert 1992; Křivánek et al. 2005a,

2006; Jarosz et al. 2008a,b] exploit irradiance and radiance gradients

to enable sparse sampling of (ir)radiance caching points and accurate

value interpolation. They use Monte Carlo integration to evaluate

those gradients numerically. In contrast, we derive analytic formulae

for SH gradients. More recently, second-order derivatives (Hessians)

have been used for error control of the first-order approximation

using gradients [Jarosz et al. 2012; Schwarzhaupt et al. 2012; Marco

et al. 2018]. It is worth exploring analytic forms of higher order

derivatives in the future.
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Holzschuch and Sillion [1995] developed analytic radiosity gradi-

ents with constant and linear emitters. They used Stokes’ theorem

to separate the radiosity gradient into two parts: a contour integral

and a surface integral. We achieve similar results using the Reynolds

transport theorem [Leal 2007]. Their follow-up work [Holzschuch

and Sillion 1998] presented analytic second-order derivatives of the

radiosity function, enabling error bounding for hierarchical radios-

ity algorithms. However, their analysis of the radiosity method only

handles diffuse surface patches, while our SH gradients apply to

incident lighting and can also be used for glossy surfaces.

Differentiable Rendering. Building on early approaches to gradi-

ent light transport [Arvo 1994; Ramamoorthi et al. 2007], recent

efforts enable differentiating paths including shadows [Li et al. 2018]

and radiative transport [Zhang et al. 2019], with different param-

eterizations [Loubet et al. 2019]. Our method can also be viewed

as a differentiable rendering technique, and indeed makes use of

the Reynolds transport theorem [Leal 2007], also used in the work

by Zhang et al. [2019]. However our goals are very different: we

compute SH gradients for PRT, deriving a novel analytic formula. In-

sights from our paper can be relevant in the future for differentiable

rendering and machine learning applications [Liu et al. 2019].

Numerical/Automatic Differentiation. For gradient computations,

it is possible to use numerical finite differencing. However, this

requires finding the appropriate step size, and can be noisy and

inefficient, as noted in the papers above. It is also possible to use

automatic differentiation (for example, as used in the work by Li

et al. [2015]). However, the results are not optimized, and are less

efficient than our analytic gradients. Moreover, we present an ex-

plicit analytical derivation, with novel insights, which cannot be

achieved with automatic differentiation.

3 PRELIMINARIES
We first introduce basic background on PRT, spherical harmonics,

area lights and differentiating integrals.

3.1 Reflection Equation and PRT
The simplest version of precomputed radiance transfer (PRT) tries

to solve the reflection equation at spatial position x ,1

B(x) =

∫
S2
Li (x,ωi )T (x,ωi ) dωi , (1)

where B(x) is the reflected radiance or image intensity, Li (x,ωi ) is

the incoming lighting at x from directionωi , and we integrate over

the sphere of incoming directions.T (x,ωi ) is the transport function

which is precomputed at each vertex in PRT, and encapsulates the

BRDF, cosine term and visibility.

In this paper, our focus is on lighting, i.e., efficient SH projections

of Li , rather than the transport T . Any general PRT method can be

used to handle the transport function without modifications to the

relevant code. In general, Li and T are expanded in (real) spherical

harmonics Ylm (x), which are orthonormal basis functions on the

1
For notational simplicity, we assume diffuse reflections and drop dependence of

reflected directionωo in B andT . In general, we can also handle non-diffuse reflections

B(x ,ωo ) using a glossy PRT extension (see Fig. 1). Since we focus only on lighting Li ,
any PRT framework can be supported, including interreflections and dynamic scenes.

unit sphere. Therefore, the integral reduces to a simple summation,

B(x) =
∑lmax

l=0
∑l
m=−l Llm (x)Tlm (x), (2)

where Llm and Tlm are spherical harmonic coefficients for the

lighting and transport respectively (with L =
∑
l ,m LlmYlm and

T =
∑
l ,m TlmYlm ). We typically consider lmax = 8 in this paper,

involving 81 SH terms; the summation can be computed at each ver-

tex x as a dot-product of lighting and transport coefficient vectors

in graphics hardware for each color channel.

In the original PRT formulation for distant environment maps,

lighting is independent of spatial position x and the lighting coeffi-

cients Llm can be computed once for each frame, while transport

coefficients Tlm (x) are precomputed and stored. In our case, for

near-field area lighting, Llm (x) changes at each spatial location.

3.2 Spherical Harmonics
Spherical harmonics (SH) are a set of orthogonal functions Ylm
defined on the unit sphere S2. Let ω = (θ,ϕ) = (x,y, z) be a

unit direction on S2. The forms of the real SH basic functions are

summarized in Appendix A. In particular, zonal harmonics (ZH)

Yl0(ω) = KlPl (cosθ ) are a subset of SH basis functions form = 0,

where the normalization Kl =
√

2l+1
4π and Pl is the Legendre poly-

nomial of degree l . Zonal harmonics are radially symmetric around

the z-axis. To represent a ZH basis function that is centered around

an arbitrary axisωc , we write the rotated ZH using dot products:

Yl0(ω ·ωc ) = KlPl (ω ·ωc ).

As pointed out by Nowrouzezahrai et al. [2012], any SH basis

function Ylm can be sparsely factorized into a sum of rotated ZH

basis functions,

Ylm (ω) =
∑
j α

m
l , jYl0(ω ·ωl , j ), (3)

whereωl , j represents the central direction of each rotated ZH lobe

and αml , j is its corresponding weight. Theoretically, to represent

each band-l SH basis function, 2l + 1 rotated ZH lobes are required.

However in practice, the ZH lobes can be shared across all bands

(Appendix B), resulting in a sparse weight matrix αml , j and faster SH

rotation.

3.3 Analytic Spherical Harmonic Coefficients
Given a polygonal light source A with unit intensity, we denote its

projection onto a unit sphere centered at the shading point x as

Q(x). The SH coefficients of this area light source with respect to x
are given by integrating the SH basis functions over Q ,

Llm (x) =

∫
Q (x )

Ylm (ω) dω. (4)

By applying the zonal harmonic factorization (Eq. (3)) to Ylm , the

SH coefficients can be rewritten as

Llm (x) =

∫
Q (x )

©­«
∑
j
αml , jYl0(ω ·ωl , j )

ª®¬ dω

=
∑
j
αml , j

∫
Q (x )

Yl0(ω ·ωl , j ) dω︸                       ︷︷                       ︸
=: Ll , j (x )

. (5)
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Therefore, computing Llm (x) boils down to computing the ZH co-

efficients Ll , j (x). Belcour et al. [2018] further represented the ZH

coefficient as the sum of cosine-power integrals and found ana-

lytic solutions for these integrals over spherical polygons. Wang

and Ramamoorthi [2018] derived analytic ZH coefficients by ap-

plying Stokes’ Theorem to convert surface integrals to boundary

integrals. The boundary integrals are further solved using the re-

currence relations of Legendre polynomials, which are also used

in our derivation. However, our approach is different, in terms of

finding the SH gradients, which we reduce to a novel boundary

integral by differentiating the surface integral for ZH coefficients. A

crucial insight helping us to find the analytic formula is in reducing

a key term to the earlier ZH coefficient recurrence, which involves

minimal overhead to evaluate coefficients and gradients jointly.

3.4 Differentiating Integrals
In this paper, our goal is to find the SH spatial gradients ∇x Llm (x),
which we will often denote simply as ∇Llm (x). This reduces to
differentiating the integral on the right-hand side (RHS) of Eq. (4).

To this end, we leverage the Reynolds transport theorem which

originates in fluid mechanics [Leal 2007] and generalizes the Leibniz

integral rule for differentiation under the integral operator.

Let Ω(π ) be an n-dimensional manifold parameterized by π . We

are interested in differentiating the integration of a function f over

the region Ω(π ). The partial derivative with respect to π can be

expressed as

∂π

(∫
Ω(π )

f dΩ(π )

)
=

∫
Ω(π )

Ûf dΩ(π ) +

∫
∂Ω(π )

⟨n, Ûx⟩ f d∂Ω(π ),

(6)

where ∂π := ∂
∂π

and
Ûf := ∂π f . The differentiation result has two

parts. The first one is an integral on the original domain Ω(π ). The
other one is a boundary integral on the (n − 1)-dimensional region

∂Ω(π ). For its integrand, we define Ûx := ∂πx , n is the normal

direction at each x ∈ ∂Ω(π ) and points towards the exterior by

convention, and ⟨·, ·⟩ is the dot product of two vectors.

Recent work in differentiable rendering [Li et al. 2018; Zhang

et al. 2019] have already shown the significance of the boundary

integral for correctly evaluating geometric derivatives. Later in §4

and §5, we will see the boundary integral also leads to significant

formula simplification and enables the analytic derivation.

4 DIFFERENTIATING SPHERICAL HARMONIC
COEFFICIENTS

In this section, we will use the Reynolds transport theorem to differ-

entiate the SH coefficients for area lights, showing that SH gradients

can be computed from boundary integrals. In §5 we will further

derive our key result, an analytic formula. In §6 we develop our SH

gradient (jointly with SH coefficients) evaluation algorithm and the

gradient-based interpolation method, showing how to handle mul-

tiple area light sources. While the derivation is somewhat involved,

the actual algorithm involves only a few simple modifications to

previous code for SH coefficients. Readers interested primarily in

implementation may wish to first browse §6 and Algorithms 1 and 2.

Let A = (p1,p2, . . . ,pN ) be a uniform polygonal light source

with N points in R3 and x be the shading point where we want

(a) (b)

Fig. 2. (a) Illustration of the spherical projection for a triangle light. (b)
When the shading point x moves by Ûx (equivalent to the area light moves
by − Ûx ), the projected spherical polygon also changes accordingly.

to evaluate the incident radiance (see Fig. 2-a). Note that Q(x) =
(ω1,ω2, . . . ,ωN ) is a spherical polygon obtained by projecting A
onto the unit sphere S2 centered at x (see Fig. 2-a), where ωi =
pi−x
∥pi−x ∥

. Both Q(x) and its boundary (which consists of arcs on S2)

∂Q(x) = {�ωiωi+1 | i = 1, . . . ,N } may vary with x .

4.1 Spherical Harmonic Gradient
Given a shading point x = (x,y, z), we define the SH gradient as

the spatial gradients with respect to x ,

∇Llm (x) = (∂xLlm (x), ∂yLlm (x), ∂zLlm (x)). (7)

Without loss of generality, we will focus on one of the spatial par-

tial derivatives ∂zLlm (x) in the following derivations. The other

gradient components can be evaluated in the same way.

To evaluate the SH coefficient in Eq. (4), the SH basis function

is integrated over a varying domain Q(x) as the shading point x
changes. By applying the Reynolds transport theorem to the right-

hand side (RHS) of Eq. (4), we can write the partial derivative as

∂z

∫
Q (x )

Ylm (ω) dω =

∫
Q (x )

∂z [Ylm (ω)] dω +∫
∂Q (x )

⟨n⊥, Ûω⟩Ylm (ω) dℓ(ω). (8)

The first integral on the RHS vanishes, because the SH basis func-

tion is independent of the shading point position so ∂z [Ylm (ω)] = 0.

The second integral is due to the moving boundary ∂Q(x) as x
varies (see Fig. 2-b). For everyω ∈ ∂Q(x), dℓ(ω) represents the arc

length measure. The normal vector n⊥ is in the tangent space of

ω ∈ S2 and perpendicular to the boundary curve. We denote Ûω as

the change rate of the boundary location ω with respect to z, i.e.
Ûω = ∂zω. Let y ∈ ∂A be a point on the polygonal light boundary.

Further, the shading point x has a change rate Ûx = (0, 0, 1). We

can establish the following relation between the change rates (see

Fig. 3),

Ûω = ∂z

(
y − x

∥y − x ∥

)
=

− Ûx

∥y − x ∥
−ω

〈
ω,

− Ûx

∥y − x ∥

〉
. (9)

4.2 Reduction to Edge/Arc Integrals
The previous subsection shows that the spatial partial derivative

can be simplified as

∂zLlm (x) =

∫
∂Q (x )

⟨n⊥, Ûω⟩Ylm (ω) dℓ(ω), (10)
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Fig. 3. Evaluating the change rate of ω . We first project − Ûx to the unit
sphere, then obtain Ûω by extracting the component of − Ûx

∥y−x ∥
that is per-

pendicular to ω .

which is a 1D integral on the spherical polygon edges.

We now decompose the boundary integral into a sum of arc

integrals for each arc �ωiωi+1 ∈ ∂Q(x),

∂zLlm (x) =
N∑
i=1

∫
�ωiωi+1

⟨ni , Ûω⟩Ylm (ω) dℓ(ω)︸                                ︷︷                                ︸
=:G (i )

lm

. (11)

For everyω ∈ �ωiωi+1, it has the same normal direction

ni =
ωi ×ωi+1
∥ωi ×ωi+1∥

. (12)

Further, the edge integral can be parameterized with the radian

angle t ∈ [0,Ti ], Ti = arccos (ωi ·ωi+1) as

ω(t) = ωi cos t + λ sin t, (13)

where λ = ni ×ωi . The direction change rate Ûω(t) can be evaluated

using Eq. (9). The arc length measure dℓ(ω) is equal to dt since the
sphere radius is one. In summary, we can rewrite the arc integrals

in Eq. (11) as simple 1D integrals,

G
(i)
lm =

∫ Ti

0

⟨ni , Ûω(t)⟩Ylm (ω(t)) dt . (14)

At this point, it would be possibly to simply evaluate G
(i)
lm effi-

ciently using 1D numerical quadrature rules.
2
However, we will go

even further, deriving a fully analytic recurrence formula in §5.

Discussion. The reduction of area light computations to edge

integrals over the bounding arcs is common, but previous work

has used Stokes’ theorem for polynomial or spherical harmonic

coefficients [Snyder 1996; Wang and Ramamoorthi 2018]. Our use of

the Reynolds transport theorem to reduce the gradients to boundary
integrals is a novel approach, to the best of our knowledge.

Annen et al. [2004] developed a semi-analytic solution to SH

gradients. We show in Appendix C that their results can also be

derived from the Reynolds transport theorem, but using a different

parameterization. In their case, the integration domain is indepen-

dent of the varying parameters. As a result, the boundary integral

(second integral on the RHS of Eq. (8)) becomes zero after differ-

entiating with the Reynolds transport theorem. On the other hand,

we use a parameterization such that the integration domain varies

2
Note that the integrand is smooth and low-dimensional (1D), so Monte Carlo

sampling is not required; a standard integration rule like Simpson’s or a higher-order

quadrature scheme could be employed. This may be desirable in some applications.

while the integrand is independent. Therefore, the integral of the

differentiated quantity (first integral on the RHS of Eq. (8)) is zero.

Although both methods result in equivalent solutions, they have

different algorithmic implications. In thework byAnnen et al. [2004],

they need to numerically integrate functions in 2D, even though the

integrand can be evaluated analytically or by automatic differentia-

tion. On the other hand, our parameterization results in dimension

reduction. The 1D integrals can not only be evaluated numerically

in a more efficient way, but also lead to analytic solutions. Different

applications may prefer specific parameterizations. For example, in

differentiable rendering [Li et al. 2018; Zhang et al. 2019; Loubet

et al. 2019], one wants to avoid the boundary integration as much as

possible, because the gradient estimation requires additional effort

for edge sampling. Further, the edge integrals they evaluated are

too complex to have analytic solutions. In contrast, we prefer to

reduce SH gradients to edge integrals. The dimension reduction on

the integral domain makes the analytic derivation much easier.

5 ANALYTIC FORMULA
In this section, we will show how to solve SH gradients analytically.

First, we use ZH factorization [Nowrouzezahrai et al. 2012], see

Eqs. (3, 5), to rewrite Eq. (14) in terms of ZH integrals (we focus on

one edge in the following derivations),

G
(i)
lm =

∑
j
αml , j

∫ Ti

0

⟨ni , Ûω(t)⟩Yl0(ω(t) ·ωl , j ) dt︸                                     ︷︷                                     ︸
=:G (i )

l , j

. (15)

The weights αml , j and central directions ωl , j of the ZH lobes can

be precomputed. Now, the problem reduces to how to evaluate the

integral G
(i)
l , j analytically.

The input of our method includes the edge endpoints pi and pi+1,
the shading point x , its change rate Ûx that equals (0, 0, 1) when

differentiating with respect to z, and the central direction ωl , j of

the j-th ZH lobe. Briefly, the derivation involves simplifying the

integrand, rearranging terms and reducing to the known recurrence

relations of Legendre polynomials.

5.1 Solving for G(i)
l , j

Transforming to Local Frame. We seek to represent the integrand

of G
(i)
l , j by a function of t , i.e., д(t) = ⟨ni , Ûω(t)⟩Yl0(ω(t) ·ωl , j ), and

simplify it as much as possible. First, we translate the edgepipi+1 by
−x so that the shading point is at the origin. We denote the distances

from the shading point to the edge endpoints as ℓi = ∥pi − x ∥
and ℓi+1 = ∥pi+1 − x ∥. The arc �ωiωi+1 is represented by two

unit vectorsωi andωi+1. Then, we build a local frame (ωi ,λi ,ni ),
where ni and λi are defined in Eqs. (12, 13). We transform all the

related vectorsωi ,ωi+1, andωl , j into this local frame by a rotation

operator R(u) = (u ·ωi ,u ·λi ,u ·ni ). One benefit is that expressions
ofω(t) are simpler after rotation: R(ω(t)) = (cos t, sin t, 0), because
the edge is completely in the xy-plane andωi aligns with the x-axis.
Moreover, the function valueд(t) is unchanged since the dot product
is invariant under rotation.
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Simplifying ⟨ni , Ûω(t)⟩. To evaluate this term, we can expand and

simplify it using Eq. (9):

⟨ni , Ûω(t)⟩ =

〈
ni ,

− Ûx

∥y(t) − x ∥

〉
− ⟨ni ,ω(t)⟩

〈
ω(t),

− Ûx

∥y(t) − x ∥

〉
= −

1

∥y(t) − x ∥
⟨ni , Ûx⟩, (16)

becauseni is perpendicular toω(t). Assumingni = (nx ,ny ,nz ), we
know that ⟨ni , Ûx⟩ = nz . Then, it remains to find ℓ(t) = ∥y(t) − x ∥.
We denote y(t) = x + ℓ(t)ω(t) as the intersection point of pipi+1
and the ray with direction ω(t) starting at x . The solution can be

found by solving a linear system,

ℓ(t) =

(
sin t

ℓi+1
−
sin (t −Ti )

ℓi

)−1
sinTi . (17)

Recall that ℓi and ℓi+1 are the distances to area light vertices pi and
pi+1 respectively, from the shading point x (corresponding to ℓ(0)

and ℓ(Ti )). We provide the detailed derivation in Appendix D.1.

To sum up, Eq. (16) can be written as

⟨ni , Ûω(t)⟩ = −
nz

sinTi

(
sin t

ℓi+1
−
sin (t −Ti )

ℓi

)
. (18)

Simplifying Yl0(ω(t) · ωl , j ). Given a precomputed central di-

rection ωl , j , we denote the vector after rotation as R(ωl , j ) =

(cx , cy , cz ). The ZH basis function can be written as

Yl0(R(ω(t)) · R(ωl , j )) = KlPl (cx cos t + cy sin t). (19)

Finally, plugging Eqs. (18, 19) back in Eq. (15), we have

G
(i)
l , j =

nzKl
ℓi sinTi

∫ Ti

0

sin (t −Ti )Pl (cx cos t + cy sin t) dt −

nzKl
ℓi+1 sinTi

∫ Ti

0

sin (t)Pl (cx cos t + cy sin t) dt . (20)

Rearranging Terms. Despite our simplifications to the integrand,

it remains nontrivial to evaluate the integrals in Eq. (20) analytically.

Fortunately, forh(t) = cx cos t+cy sin t , the integral
∫
hPl (h) dt does

have a closed-form solution, which can be derived using integration

by parts [Wang and Ramamoorthi 2018]. Therefore, our goal is to

rearrange the integrand so that it reduces to this integral.

We first combine the linear combination of sine and cosine waves

to a single sine wave with a scaled amplitude A and a phase shiftT ′
,

h(t) = cx cos t + cy sin t = A sin (t +T ′), (21)

where A =
√
c2x + c

2

y and T ′ = arctan (cx /cy ). Using trigonometric

identities, the first integral on the RHS of Eq. (20) can be reformu-

lated as

cos (Ti +T
′)

A
Cl −

sin (Ti +T
′)

A
El , (22)

where Cl =
∫ Ti
0

hPl (h) dt and El =
∫ Ti
0

( d

dt h)Pl (h) dt . We provide

the derivation details in Appendix D.2. The second integral can be

solved in the same way. Finally, Eq. (20) can be simplified as

G
(i)
l , j =

nzKl
Aℓi sinTi

(Cl cos (Ti +T
′) − El sin (Ti +T

′)) −

nzKl
Aℓi+1 sinTi

(Cl cosT
′ − El sinT

′).

(23)

Analytic Formula for El . Notice that the analytic solution to El
can be directly derived using a change of variable dh = ( d

dt h) dt ,

El =

∫ Ti

0

(
d

dt
h)Pl (h) dt =

∫ h(Ti )

h(0)
Pl (h) dh

=
1

2l + 1
[Pl+1(h) − Pl−1(h)]

����cx cosTi+cy sinTi

cx
. (24)

Here we use the following recurrence relation of the Legendre

polynomials: (2l + 1)Pl (h) =
d

dh (Pl+1(h) − Pl−1(h)).
3

Recurrence Formula for Cl . Unlike El , it is difficult, if not impos-

sible, to derive a direct representation for Cl . However, our key
insight is in reducing the integral expressions to this specific form.

Indeed, Wang and Ramamoorthi [2018] have developed a recurrence

formula for Cl and associated edge integrals,

Cl =
1

l + 1

[
(cx sinTi − cy cosTi )Pl (h(Ti )) + cyPl (cx ) + (c2x + c

2

y − 1)Dl + lBl−1
]
,

(25)

where the edge integrals Bl and Dl are given by Bl =
∫ Ti
0

Pl (h) dt

and Dl =
∫ Ti
0

d

dh Pl (h) dt . Their associated recurrence formulae are,

Bl =
2l − 1

l
Cl−1 −

l − 1

l
Bl−2, (26)

Dl = (2l − 1)Bl−1 + Dl−2. (27)

The base cases
4
for l = 0 are

B0 = Ti , D0 = 0. (28)

5.2 Summary
Based on Eqs. (11, 15), the SH gradient evaluated at one point x can

be expressed as

∂zLlm =
∑
i

∑
j
αml , jG

(i)
l , j =

∑
j
αml , j

(∑
i
G
(i)
l , j

)
︸      ︷︷      ︸
=:Gl , j

. (29)

We have just derived an analytic formula forG
(i)
l , j (Eq. (23)), reducing

it to simpler integrals of the Legendre polynomials which are easier

to solve.

Analytic SH Coefficients. The edge integrals Bl ,Cl and Dl are not

only used for evaluating SH gradients, but also building blocks for

computing SH coefficients [Wang and Ramamoorthi 2018]. There-

fore, we can simultaneously compute SH coefficients and gradients

without much overhead. For completeness, we provide analytic for-

mulae for SH coefficients, which are rewritten and simplified from

previous work with respect to our notation.

Similar to Eq. (29), we can decompose one SH coefficient into the

contributions from each individual ZH lobe as Llm =
∑
j α

m
l , jLl , j .

Denoting H
(i)
l , j as the intermediate quantity for the individual con-

tribution from the j-th ZH lobe and the i-th edge,

H
(i)
l , j = czKlBl , (30)

3
The identity still holds for l = 0 if we define P−1(h) ≡ 0.

4
Additionally, we define B−1 ≡ 0 and D−1 ≡ 0.
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Algorithm 1 Evaluation of lighting coefficients for every vertex

1: function LightCoeffForPRT

2: // SH Evaluation on a 3D grid

3: Build a uniform 3D grid of resolutionM3

4: for each grid point x do
5: for each area light in the scene do
6: Accumulate Llm (x) and ∇Llm (x) ◃ Algorithm 2

7: end for
8: end for
9: // Gradient-based Interpolation for PRT vertices

10: for each vertexv do
11: Find its eight adjacent grid points

12: for each SH basis (l,m) do
13: Fetch Llm and ∇Llm at the eight grid points

14: Hermite interpolate Llm (v) ◃ Algorithm 4

15: end for
16: end for
17: end function

the ZH coefficient Ll , j (Eq. (5)) is given by the following recurrence

formula,

Ll , j =
2l − 1

l(l + 1)

∑
i
H
(i)
l−1, j︸      ︷︷      ︸

=:Hl−1, j

+
(l − 2)(l − 1)

l(l + 1)
Ll−2, j . (31)

The base case for l = 0 is basically the solid angle subtended by the

polygon [Arvo 1995], scaled by K0,

L0, j = K0

[
N∑
i=1

arccos

(
ωi ×ωi−1

∥ωi ×ωi−1 ∥
·

ωi ×ωi+1

∥ωi ×ωi+1 ∥

)
− (N − 2)π

]
. (32)

We also define L−1, j ≡ 0 for completeness.

Although previous work and ours both reduce to the same set of

edge integrals, the derivation techniques are quite different. Previous

work (Eqs. (30, 31)) uses Stokes’ Theorem to convert the surface

integrals for SH coefficients to the edge integrals. On the other hand,

our reduction is based on differentiation of surface integrals under

a specific parameterization, followed by term rearrangements with

algebraic identities.

6 ALGORITHM
Based on the analytic formulae presented in §5, we demonstrate

a practical algorithm to evaluate SH coefficients and gradients si-

multaneously, given a shading point and one polygonal light (§6.1).

However, it is still challenging to handle a scene with many area

lights, since the method scales linearly in the number of lights.

Fortunately, SH coefficients vary smoothly as the shading point

moves. Based on this observation, we develop an efficient algorithm

to evaluate the lighting coefficients in the PRT framework, especially

when there are multiple uniform polygonal area lights. Our method

is outlined in Algorithm 1.We evaluate SH coefficients and gradients

for all lights on a sparse grid (Lines 2–8 of Algorithm 1), followed by

interpolating SH coefficients of PRT vertices in between (Lines 9–

16). In terms of interpolation, we present a gradient-based, tricubic

Hermite interpolation method within a 3D grid (§6.2), which is more

accurate than the trilinear interpolation and previous Taylor-series

based interpolation [Annen et al. 2004]. The computation time of

Algorithm 2 SH coefficients and gradients for one polygonal light

1: function SHCoeffAndGrad(x , N , {pi }, lmax, {α
m
l , j }, {ωl , j })

2: for i = 0 to N − 1 do ◃ Precomputation for each vertex

3: pi = pi − x , ℓi = ∥pi ∥,ωi = pi/ℓi
4: end for
5: for i = 0 to N − 1 do ◃ Precomputation for each edge

6: ni =
ωi×ωi+1
∥ωi×ωi+1 ∥

, λi = ni ×ωi

7: Ti = arccos (ωi ·ωi+1)

8: end for
9: for j = 0 to 2lmax do ◃ Iterate over 2lmax + 1 ZH lobes

10: ωc = ωlmax, j ◃ Share ZH lobes, Appendix B

11: {Hl , j } = 0 ◃ Initialization for ZH coefficients

12: {Gl , j } = 0 ◃ Initialization for ZH gradients

13: for i = 0 to N − 1 do ◃ Iterate over N edges

14: cx = ωc ·ωi , cy = ωc · λi , cz = ωc · ni ◃ Rotation
15: nz = ni [z] ◃ ⟨ni , Ûx⟩
16: A = (c2x + c

2

y )
1/2

, T ′ = arctan (cx /cy ) ◃ Eq. (21)

17: ({Bl }, {Cl }, {El }) = Recurrence(cx , cy ,Ti , lmax)

18: ◃ Algorithm 3

19: for l = 0 to lmax do

20: Kl =
√

2l+1
4π ◃ SH Normalization factor

21: Hl , j += czKlBl ◃ Eq. (30)

22: Gl , j += G(nz ,Kl ,A, ℓi , ℓi+1,Ti ,T
′,Cl , El )

23: ◃ Eq. (23)

24: end for
25: end for
26: L0, j = K0 × solidAngle(N , {ωi }) ◃ Base case, Eq. (32)

27: for l = 1 to lmax do
28: Ll , j =

2l−1
l (l+1)Hl−1, j +

(l−2)(l−1)
l (l+1) Ll−2, j ◃ Eq. (31)

29: end for
30: end for
31: for l = 0 to lmax do ◃ ZH factorization

32: form = −l to l do
33: Llm = 0

34: ∂zLlm = 0

35: for j ∈ {j | αml , j , 0} do ◃ Sparse weights

36: Llm += αml , jLl , j
37: ∂zLlm += αml , jGl , j ◃ Eq. (29)

38: end for
39: end for
40: end for
41: return ({Llm }, {∂zLlm })

42: end function

interpolation is independent of the number of lights, allowing us to

render a scene with hundreds of area lights in real-time.

6.1 Iterative Evaluation of SH Coefficients and Gradients
We demonstrate the iterative evaluation of both SH coefficients

and gradients in Algorithm 2. The algorithm takes a shading point

x , a polygon {pi } with N points, the weights {αml , j } and central

directions {ωl , j } of the precomputed ZH lobes up to degree lmax as
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Algorithm 3 Iterative evaluation of edge integral recurrences

1: function Recurrence(cx , cy , Ti , lmax)

2: B0 = Ti , C0 = cx sinTi − cy cosTi + cy ◃ Base cases

3: D0 = 0, E0 = cx cosTi + cy sinTi − cx
4: for l = 1 to lmax do
5: Bl =

2l−1
l Cl−1 +

l−1
l Bl−2 ◃ Eq. (26)

6: Dl = (2l − 1)Bl−1 + Dl−2 ◃ Eq. (27)

7: Cl = C(cx , cy ,Ti , l,Dl ,Bl−1) ◃ Eq. (25)

8: El = E(cx , cy ,Ti , l) ◃ Eq. (24)

9: end for
10: return ({Bl }, {Cl }, {El })
11: end function

input. It outputs (lmax+1)
2
SH coefficients {Llm } and SH gradients

(spatial partial derivatives) {∂xLlm }, {∂yLlm }, {∂zLlm }. 5

Precomputation. First, we precompute the required quantities

for each polygon vertex and edge. Note that the order of polygon

vertices does matter. Specifically, the dot product of the face normal

(p1 − p0) × (p2 − p0) and p0 − x should be positive. In Lines 2–4 of

Algorithm 2, we translate the polygon vertices pi by −x , compute

the distances ℓi between the vertices and the shading point, and

obtainωi by projecting the vertices onto the unit sphere. Then, we

build a local frame (ωi ,λi ,ni ) for each polygon edge (Line 6) and

compute its subtended angle Ti (Line 7).

Evaluation of Individual ZH Coefficients and Gradients. Starting
from Line 9 of Algorithm 2, we evaluate the ZH coefficients (in-

dicated in the orange background) and gradients (indicated in the

purple background) for up to (2lmax + 1) ZH lobes. We use ωc to

indicate the central direction of the j-th ZH lobe (Line 10), given

the lobe sharing strategy in Appendix B. The contributions to ZH

coefficients and gradients will be accumulated for every polygon

edge (Lines 13–25).

For each edge, the local coordinates (cx , cy , cz ) ofωc in the edge’s

local frame are calculated in Line 14. We calculate the values nz ,A
and T ′

in Lines 15 and 16, which are required for the gradient

evaluation. The edge integrals Bl ,Cl and El are evaluated iteratively
(Line 17) from l = 0 to lmax. We demonstrate the computation of the

recurrence formulae (Eqs. (24–27)) in Algorithm 3. For each band

l , the values Hl , j (Line 21) and the ZH gradients Gl , j (Line 22) are

updated based on Eqs. (30) and (23) respectively.

Finally, the ZH coefficients Ll , j are evaluated in Lines 26–29,

based on another recurrence formula related to Hl , j (Eq. (31, 32)).

ZH Factorization. The final step is to reconstruct SH coefficients

and gradients from the evaluated ZH coefficients Ll , j and gradients

Gl , j (Lines 31–40). The ZH factorization weights αml , j are precom-

puted according to [Nowrouzezahrai et al. 2012]. The sparsity of

weights is maximized, so the SH reconstruction is efficient.

Summary. Evaluating ZH coefficients and gradients (Lines 9–30

of Algorithm 2) takes O(Nl2
max

) time and reconstructing SH values

with the ZH factorization (Lines 31–40) takes O(l3
max

) time. Note

5
For conciseness, we only show one of the partial derivatives in Algorithm 2. To

obtain the other two partial derivatives, we only need to replace nz by nx /ny (lines 15

and 22) and ∂z by ∂x /∂y (lines 34 and 37).

that the last ZH factorization step is quite fast, since the weights

αml , j are sparse. The overall storage required is O(l2
max

). Both the

time and space complexity are the same as in previous work [Wang

and Ramamoorthi 2018]. In terms of implementation, computing SH

gradients along with SH coefficients only requires minimal effort

(lines in Algorithm 2 with the purple background).

6.2 Gradient-Based Interpolation
Given SH coefficients and gradients evaluated on a 3D grid, we can

interpolate for any inside point (vertex in PRT) according to its eight

adjacent grid points. Note that the interpolation time only depends

on the highest SH degree lmax and is independent of the number of

lights, making our method scalable to many lights.

In terms of interpolation methods, one can interpolate SH co-

efficients trilinearly, without using SH gradients at all. Previous

work [Annen et al. 2004] uses an interpolation method based on

Taylor series. They approximate the coefficients by the first-order

Taylor polynomial from each adjacent grid point, then combine

the results using the inverse distance weighting [Ward and Heck-

bert 1992]. Both interpolation methods result in limited accuracy

(see Figs. 4 and 7). Instead, we use a more principled Hermite in-

terpolation [Van Loan 1996], approximating the interpolant as a

tricubic polynomial. We first provide details of the cubic Hermite

interpolation in 1D. Then, we discuss its extension to 3D.

1D Cubic Hermite Interpolation. Suppose the function we are go-

ing to interpolate f (x) is continuous on [xL, xR ] and we know its

values fL, fR and the first-order derivatives f ′L, f
′
R at the endpoints,

respectively. The cubic Hermite interpolant q(x) is a cubic polyno-
mial with four unknown coefficients a,b, c and d [Van Loan 1996],

q(x) = a + b(x − xL) + c(x − xL)
2 + d(x − xL)

2(x − xR ), (33)

1 2 3
x

−0.05

0.00

0.05

0.10

0.15

Y l
m

(x
)

Reference
Trilinear
Taylor
Hermite

Fig. 4. Given a rectangular area light and a shading point, we plot the
SH coefficients for (l ,m) = (7, 2) as the shading point moves along the x -
axis. The reference curve (blue solid line) is densely sampled at 2000 points.
Alternatively, we evaluate SH coefficients and gradients at 10 points (blue
dots) and interpolate the coefficients in between. The trilinear interpolation
(red dashed line) and the Taylor-series based interpolation (cyan dashed
line) [Annen et al. 2004] result in insufficient accuracy, while the cubic
Hermite interpolation result (black dashed line) matches the reference
almost perfectly.
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Algorithm 4 Tricubic Hermite interpolation from function values

fi and gradients ∇fi = (∂x fi , ∂y fi , ∂z fi ) of the eight adjacent grid
points i = 0, 1, . . . , 7

1: function TricubicHermite(p, gridSize, { fi }, {∇fi })
2: (xR ,yR , zR ) = gridSize ◃ Size of a grid voxel

3: (x,y, z) = p ◃ Vertex coordinates inside the grid voxel

4: for i = 0 to 3 do ◃ Interpolate along the x-axis
5: дi = Hermite1D(x, {0, f2i , ∂x f2i }, {xR , f2i+1, ∂x f2i+1})
6: Interpolate ∇дi linearly based on ∇f2i and ∇f2i+1
7: end for
8: for i = 0 to 1 do ◃ Interpolate along the y-axis
9: hi = Hermite1D(y, {0,д2i , ∂yд2i }, {yR ,д2i+1, ∂yд2i+1})
10: Interpolate ∇hi linearly based on ∇д2i and ∇д2i+1
11: end for
12: q(x,y, z) = Hermite1D(z, {0,h0, ∂zh0}, {zR ,h1, ∂zh1})
13: return q(x,y, z) ◃ Interpolate along the z-axis
14: end function
15: function Hermite1D(x , {xL, fL, f

′
L}, {xR , fR , f

′
R })

16: x∆ = xR − xL , s = (fR − fL)/x∆

17: a = fL , b = f ′L , c =
s−f ′L
x∆ , d =

f ′L+f
′
R−2s
x 2

∆

◃ Eq. (35)

18: return a + b(x − xL) + c(x − xL)
2 + d(x − xL)

2(x − xR )
19: ◃ Eq. (33)

20: end function

satisfying

q(xL) = fL, q(xR ) = fR , q
′(xL) = f ′L, q

′(xR ) = f ′R . (34)

We can obtain the four unknown coefficients by solving this linear

system (Eq. (34)),

a = fL, b = f ′L, c = (s − f ′L)/x∆, d = (f ′L + f ′R − 2s)/x2∆, (35)

where x∆ = xR − xL and s = (fR − fL)/x∆. We demonstrate it in

Lines 15–20 of Algorithm 4. The 1D curve plot in Fig. 4 indicates

the accuracy benefit comparing to other interpolation methods.

Fig. 5. Illustration of 3D Hermite
interpolation.

3D Tricubic Hermite Interpola-
tion. Tricubic Hermite interpola-

tion can be done by performing

the 1D cubic Hermite interpo-

lation along the three axes pro-

gressively (see Fig. 5). For any

intermediate points, the SH co-

efficients are Hermite interpo-

lated but we need to know the

SH gradients (first-order deriva-

tives) as well. In theory, apply-

ing Hermite interpolation to the first-order derivatives requires the

second-order derivatives, which will involve extra cost to evalu-

ate. For efficiency, we interpolate SH gradients trilinearly and get

satisfactory results.

We provide the pseudocode of the 3D tricubic Hermite inter-

polation in Algorithm 4. For a point p in a grid voxel with size

(xR ,yR , zR ), we translate it so that the bottom-left corner is at

(0, 0, 0). First, we interpolate along the x-axis (Lines 4–7), calculat-
ing the function values д0, . . . ,д3 by the 1D Hermite interpolation

and gradients ∇д0, . . . ,∇д3 by the linear interpolation (see the blue

-0.5 0.50

l
=
6
,
m
=
−
3

l
=
7
,
m
=
2

(a) FD (b) Ours (c) 20× Abs. diff.

Fig. 6. We show visualization plots of SH gradients (∂x -component) for
(l ,m) = (6, −3) in the top row and (l ,m) = (7, 2) in the bottom row. Images
in column (a) are computed using finite differences (FD) based on [Wang
and Ramamoorthi 2018], and images in column (b) are computed with our
method (Algorithm 2). In these images, each pixel stores a partial derivative
value encoded in false colors; The (20×) absolute differences between FD
results and our results are given in column (c), indicating the correctness of
our derivation and algorithm.

points in Fig. 5). We then interpolate along the y-axis (Lines 8–
11) and obtain the values h0,h1 and ∇h0,∇h1 (see the red points

in Fig. 5). Finally, we compute the interpolant value q(x,y, z) by
interpolating along the z-axis (Line 12).
Note that theoretically, the interpolation result depends on the

order of the individual 1D steps. However in practice, we do not

observe significant differences when we change the order.

7 RESULTS
We implement Algorithms 1–4 in GPU shaders and compute SH

lighting coefficients for each vertex in a scene. The lighting coef-

ficients are used in a PRT system, which is implemented within

the Falcor open-source real-time rendering framework [Benty et al.

2019].We run our algorithm on a few scenes withmultiple polygonal

area lights using an NVIDIA RTX 2080 Ti GPU. The scene configu-

rations and performance statistics are summarized in Table 1. We

release our code and data in the supplementary material.

7.1 Validation and Evaluation
Validation of Analytic SH Gradients. To validate our derivation of

analytic SH gradients, we compare SH gradients evaluated using our

method (Algorithm 2) and finite differences (FD) based on the work

by Wang and Ramamoorthi [2018]. Given a rectangular area light

with the bottom-left corner at (−5,−5, 1) and the top-right corner at

(5, 5, 1), the ∂x -component of SH gradients is evaluated in another

square region whose bottom-left corner is at (3, 3, 0) and top-right

corner is at (6, 6, 0). We visualize the derivatives as 2D false-colored

images in Fig. 6. Our analytic formulae agree with the numerical FD

results, except for some negligible differences caused by the FD step

size δ (we choose δ = 10
−3
). Note that computing derivatives with

the central FD requires SH coefficient evaluation at multiple points
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Table 1. Scene configurations and performance statistics. We compare running time and imagemean absolute errors (MAE) to those byWang and Ramamoorthi
[2018], which we treat as the Reference. Note that the total running time of our method also includes other necessary operations such as rasterization. We
also provide the running time of evaluating only SH coefficients to highlight the low overhead of SH gradient evaluation.

Scene Figure Triangles Lights

Grid

Reso.

Eval. SH

coeff. (ms)

Eval. coeff.

& grad. (ms)

Interp.

(ms)

Total
(ms)

FPS

MAE

(×10−3)

Reference

(ms)

Speed up

Dragon & Bunny Fig. 1 1.28M 723 8
3

16.5 20.2 6.6 27.9 35.8 0.18 110K 3943×

Monkey Fig. 7 71.2K 118 8
3

1.3 1.8 0.4 3.3 303 0.29 177 35×

Plants Fig. 8 190K 2 8
3

0.08 0.1 2.1 3.1 323 0.17 9.4 3×

Asian Dragon Fig. 9 1.42M 181 8
3

2.3 3.0 8.1 12.7 78.7 1.35 3.22K 254×

Room Fig. 10 1.71M 344 8
3

4.3 5.8 10.3 17.7 56.5 0.34 6.85K 387×

Buddha Fig. 11 422K 210 8
3

4.8 5.7 6.0 12.7 78.7 0.07 28.6K 2252×

(two for each axis), while our SH gradient evaluation can come along

with a single SH coefficient evaluation, causing minimal overhead.

We compare the performance numbers of these two methods with a

CPU-based C++ implementation; our method is 3× faster than FD.

Interpolation Methods. We have already demonstrated in Fig. 4

that the Hermite interpolation is most accurate in 1D cases. In terms

of the extension to 3D, we compare rendering results using different

interpolation methods in Fig. 7. Hermite interpolation results in an

order of magnitude smaller error than that of trilinear interpolation

and Taylor-series based interpolation. Note that Taylor-series based

interpolation [Annen et al. 2004] requires SH gradients, thus can

also benefit from our analytic SH gradient evaluation. Although the

mean absolute error (MAE) numbers are relatively small, there are

regions with significant inaccuracies in other methods. Checking the

error maps in Fig. 7(b–d), the result using Hermite interpolation has

significantly fewer pixels with large differences from the reference.

Further, we check and plot the image intensity values along a scan

line in Fig. 7(e). The black curve representing Hermite interpolation

is almost identical to the reference blue curve, while the red and cyan

curves, representing trilinear and Taylor-series based interpolation

respectively, deviate from the reference.

Scalability with Multiple lights. In Fig. 8(a), we compare the total

lighting coefficient computation time for all vertices (time for other

stages in the rendering pipeline such as rasterization is excluded)

with the previous method [Wang and Ramamoorthi 2018]. The

running time of the previous method goes up linearly with the

number of lights as expected, while ourmethod has only a small time

cost even with 512 lights. This is because the expensive computation

for every light is done on a sparse grid in our method. Our technique

can render a scene with hundreds of area lights in real-time, which

was not previously possible. We further analyze the performance of

our method and plot the running time of each step in Fig. 8(b). The

SH coefficient and gradient evaluation time scales linearly with the

increasing number of lights, but the performance impact is mitigated

since we use a sparse grid. The Hermite interpolation for each vertex

requires essentially constant time.

Grid Resolution. We demonstrate how the grid resolution influ-

ences the rendering performance and accuracy in Fig. 9. Even though

the result with resolution 4
3
already yields good visual quality (in-

spection of error images shows subtle differences in shading on the

(a) Reference

MAE (×10−3)

(b) Hermite

0.29

(c) Trilinear

4.14

(d) Taylor

3.05

0 200 400 600 800 1000 1200 1400 1600
Pixel

0.2

0.3

0.4

0.5

0.6

0.7

In
ten

sit
y

Reference
Trilinear
Taylor
Hermite

(e) Scan line intensity plot

Fig. 7. Accuracy comparison of different interpolation methods: (b) tricubic
Hermite interpolation, (c) trilinear interpolation, and (d) Taylor-series based
interpolation [Annen et al. 2004]. The reference image (a) is rendered by
computing the lighting SH coefficients at every vertex. We achieve almost
the same image quality (b) by computing SH coefficients and gradients in a
3D grid with resolution 8

3, and Hermite interpolating the light coefficients
for each vertex. The (10×) absolute error images are given in the bottom-left
insets, as well as the corresponding mean absolute error (MAE) numbers.
We also plot image intensity curves (e) for different interpolation methods
along a scan line (illustrated in the inset of (a)).

dragon and floor), the image accuracy improves as the grid reso-

lution becomes higher. But using a finer grid also requires longer

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area Lights • 1:11

(a) Time comparison to previous work
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(b) Running time for each step of our method
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Hermite interpolation

Fig. 8. Plots of SH coefficient computation time at all vertices with in-
creasing numbers of area lights. The scene is shown in the inset of (a); we
gradually subdivide the rectangular area light up to 512 triangles. (a) Previ-
ous work scales linearly in the number of area lights, so they cannot handle
many lights in real-time. On the other hand, our method is insensitive to the
increase in the number of lights, since we only need to compute the light
coefficients and gradients on a sparse grid. (b) Breaking down the running
time of our method, we can see the time for grid evaluation is also linear in
the number of lights (but still efficient because of the sparse grid), while
Hermite interpolation costs essentially constant time.

computation time and larger storage overhead. To balance perfor-

mance and accuracy, we use a resolution of 8
3
in all the results.

Relation to Source Radiance Fields. In previous work [Zhou et al.

2005], source radiance fields (SRF) are precomputed and stored for

efficient incident radiance evaluation. To support dynamic lighting,

a 5D SRF is required for each area light, causing additional storage

overhead that scales linearly in the number of lights. However, our

method only stores SH coefficients and gradients at sparse grid

points, which is independent of the number of lights. Moreover, the

source radiance fields at intermediate points are interpolated, which

can also benefit from our gradient-based interpolation.

7.2 Main Results
Wenow present additional results of renderingmore complex scenes.

Please see the supplementary video for animated versions of Figs. 1, 10,

and 11, rendered at real-time frame rates (35-80 fps)

Textured Lights. Given a textured area light, we break the light

source into smaller polygons (triangles) that are each uniformly

(a) Reference

MAE (×10−3)

(b) Resolution 4
3
, 10.9 ms

16.6

(c) Resolution 8
3
, 12.1 ms

1.35

(d) Resolution 16
3
, 34.4 ms

0.15

Fig. 9. Performance and accuracy comparison with increasing resolutions
of 3D grids. The bottom-left insets show (5×) absolute error images.

Fig. 10. A living room illuminated by two textured lights. Light sources and
scene layout are illustrated in the inset figure.

emissive. We show an example in Fig. 10, in which a room is illu-

minated by a blue and a pink textured light (see the bottom-left

inset of Fig. 10). Compared to the previous method [Wang and Ra-

mamoorthi 2018], we can render this scene with hundreds of lights

(and 1.7M polygons) in real-time, achieving a more than two orders

of magnitude speed up.

Glossy Reflection. We also show two examples with glossy materi-

als in Figs. 1 and 11. We compute the glossy reflection by extending

Eq. (1) to a triple product SH integral of lighting, BRDF and pre-

computed cosine-weighted visibility [Sloan et al. 2002; Ng et al.

2004]. Since the time complexity of the triple product integral com-

putation is O(l5
max

) [Ng et al. 2004], we bandlimit the lighting and

visibility SH coefficients with lmax = 4. Phong BRDFs are used in all

these examples, represented by SH coefficients with lmax = 8. Our

method focuses on evaluating the lighting SH coefficients only, and

is orthogonal to the glossy PRT framework.
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Fig. 11. Glossy reflections caused by more complex light sources. Light
sources and scene layout are illustrated in the inset figure.

In Fig. 1, we show images rendered with three textured lights

of gradually changing colors. These textured lights are made up

of more than seven hundred uniform triangular light sources in

total, and each of them is allowed to move independently, ulti-

mately forming a pattern which is not even strictly a textured light

source(Fig. 1(right)). Colors of the glossy highlights change sig-

nificantly as we transform the lights. Even though there are hun-

dreds of independent dynamic lights, we are still able to render this

scene in real-time, which might be challenging for source radiance

fields [Zhou et al. 2005], since it requires precomputation for each

light source.

In Fig. 11, we illuminate a Buddha model on the ground with two

lights of irregular shapes (see the insets). The left light is a blue

snow flake and the right one is a colorful fractal triangle. As we

rotate the lights, the glossy highlights on the buddha change from

purple to green. The highlights on the ground also vary according

to the light transformation.

7.3 Limitations and Future Work
On regions close to the light source or at grazing angles, there can

be high-frequency lighting variations that require a fine grid for

accurate SH interpolation. Figure 12 shows a scene with a double-

sided area light inside its bounding box. The shading that is on the

ground and close to the light’s grazing angle looks blurry when the

grid resolution is 8
3
. We will have more accurate interpolation re-

sults given grids with higher resolutions. Using multi-level adaptive

grids [Greger et al. 1998] may further improve the performance and

accuracy in such cases.

Our method is based on PRT using spherical harmonics, which

approximates path tracing and captures only low-frequency effects

due to the band-limited SH. In Fig. 13, we compare our result to the

image rendered using path tracing. There are some subtle differences

at the shadows on the ground and the plant leaves near the light

source. Nevertheless, we match the result generated by Wang and

Ramamoorthi [2018] almost perfectly, which also uses PRT. How

to improve the accuracy of all-frequency effects using spherical

harmonic PRT is orthogonal to our work and beyond the scope of

this paper. We also hope our work can inspire future research on

real-time path tracing.

In this paper, we focus on accurate analytic formulae for SH gra-

dients. In certain cases, e.g., the light source is far away, one sample

(a) Resolution 8
3

(b) Resolution 16
3

(c) Resolution 32
3

(d) Reference

Fig. 12. An example with a double-sided area light source inside the scene.
Due to the high-frequency light variations, we need finer grids for accurate
SH interpolation.

(a) Path tracing ≈ (b) PRT (Ours) = (c) PRT (Wang and

Ramamoorthi 2018)

Fig. 13. Comparison against path tracing. Our result (b) is close to the
image rendered using path tracing (a) in spite of subtle differences at the
shadows on the ground and the plant leaves near the light source, while it
matches the result of Wang and Ramamoorthi [2018] almost perfectly.

per pixel for numerical integration could be sufficient and faster

than analytic evaluation. Switching between numerical and analytic

evaluations according to some heuristics [Yuan et al. 2012] might

be potentially helpful. In addition, applying analytical approxima-

tions [Lecocq et al. 2017] might make the gradient evaluations more

efficient.

Note that non-uniform or textured lights can be handled by our

method, simply by breaking the light source into smaller uniform

components. With techniques demonstrated in prior analytic meth-

ods [Arvo 1995; Chen and Arvo 2000, 2001], it might be possible

to extend our analytic SH gradients for piecewise linear area light

sources. Moreover, we are currently limited to uniform angular

emission rather than, for example, spotlights. We seek to lift this

limitation in the future, perhaps by developing fast boundary nu-

merical integration schemes.

Finally, note that we do not currently address multiple lights shad-

owing each other (although PRT methods that support dynamic

shadows can partially address this situation). We believe the bound-

ary integral formulation of this paper could also generalize occluded

irradiance gradients [Arvo 1994] to SH gradients by incorporating

polygon depth clipping.
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8 CONCLUSIONS
We have presented a novel analytic derivation for SH gradients

from uniform polygonal area lights, showing how to reduce the

calculations to a boundary integral and ultimately to an earlier

recurrence for SH coefficients. The derivation fills an important gap

in both SH and PRT methods, as well as more recent differential

rendering techniques.While the derivation is complicated, the actual

implementation is simple, requiring only a few additional lines of

code beyond those for SH coefficients. We show how gradients can

be used for Hermite interpolation with very high accuracy and

sparse grid sizes. Crucially, we can accumulate the contributions of

hundreds of lights with only minor overhead, enabling PRT to scale

to hundreds of independent area lights in real-time.

PRT represents only one possible application. SH gradients could

also be used for importance sampling the radiance field from multi-

ple area lights in offline rendering, and for extensions such as path

guiding. We simply need to sample the Hermite-interpolated SH

lighting at each shading point or pixel. Given that SH gradients are

a fundamental mathematical quantity, we believe there are many

other interesting possibilities in rendering and beyond.
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A SPHERICAL HARMONICS
The real SH functions for l ≥ 0,−l ≤ m ≤ l are [MacRobert 1948]

Ylm (ω) =


√
2Klm sin(|m |ϕ)P

|m |

l (cosθ ), m < 0,

Kl0P
0

l (cosθ ), m = 0,
√
2Klm cos(mϕ)Pml (cosθ ), m > 0,

(36)

where Pml are the associated Legendre polynomials and Klm is the

normalization term, given by Klm =
√

2l+1
4π

(l−|m |)!

(l+ |m |)!
. Settingm = 0,

we obtain the ZH basis form with Kl = Kl0 and the Legendre

polynomial Pl = P0l .

B SHARING ZH LOBES ACROSS BANDS
To enable efficient ZH factorization, Nowrouzezahrai et al. [2012]

presented a ZH lobe sharing strategy. For SH basis functions up to

degree lmax, the central directions of ZH lobes are

{ω0,0 = ω1,0 = ω2,0 = ω3,0 = · · · = ωlmax,0,

ω1,1 = ω2,1 = ω3,1 = · · · = ωlmax,1,

ω1,2 = ω2,2 = ω3,2 = · · · = ωlmax,2,

. . . . . . ,ωlmax,2lmax
}. (37)

Specifically, the band-l SH basis functions will use a set of 2l + 1
central directions {ωl ,0, . . . ,ωl ,2l }.

C RELATION TO [Annen et al. 2004]
Annen et al. [2004] developed a semi-analytic solution to SH gradi-

ents. They integrate the SH basis functions over the area domain A
of the polygonal light source, which is independent of the varying

shading point x . By changing the solid angle measure to the area

measure in Eq. (4), the SH coefficients can be rewritten as

Llm (x) =

∫
[0,1]2

Ylm (s(u))
⟨n(y(u)),−s(u)⟩

∥y(u) − x ∥2
| detJy | du . (38)

Note that y : [0, 1]2 → A is a transformation that warps a unit

square to a polygon and Jy denotes the corresponding Jacobian

matrix. The normalized direction vector s(u) =
y(u)−x
∥y(u)−x ∥

is from

the shading point x to a point y(u) on the area light. In the change-

of-measure term
⟨n(y(u)),−s (u)⟩

∥y(u)−x ∥2
, we indicate n(y(u)) as the surface

normal.

To differentiate the integral in Eq. (38), we can directly move the

differentiation operator into the integration,

∂zLlm (x) =

∫
[0,1]2

∂z

[
Ylm (s(u))

⟨n(y(u)),−s(u)⟩

∥y(u) − x ∥2
| detJy |

]
du .

(39)

This is a special case of the Reynolds transport theorem. The bound-

ary integral vanishes since the integration domain is static. The

integrand in Eq. (39) can be computed either analytically or using

automatic differentiation. But the 2D integral needs to be evaluated

numerically, and has no known analytic form.

D DETAILED DERIVATIONS

D.1 Deriving ℓ(t) in Eq. (17)
After transforming the edge pipi+1 into the local frame (ωi ,λi ,ni ),
the edge is in the xy-plane so we can omit the z-coordinate and solve

for ℓ(t) in 2D. The 2D local coordinates of the edge endpoints are

pi = (ℓi , 0) and pi+1 = (ℓi+1 cosTi , ℓi+1 sinTi ). We want to know

the travel distance ℓ of the ray with direction (cos t, sin t) starting
from (0, 0), before hitting the edge. The geometric relation can be

described in the following linear system,{
ℓ cos t = (1 − k)ℓi + kℓi+1 cosTi ,
ℓ sin t = kℓi+1 sinTi .

(40)

After eliminating k , we have

ℓ(ℓi sin t − ℓi+1 sin (t −Ti )) = ℓi ℓi+1 sinTi

⇒ ℓ(t) =

(
sin t

ℓi+1
−
sin (t −Ti )

ℓi

)−1
sinTi . (41)

D.2 Deriving Eq. (22)

Let h = cx cos t + cy sin t = A sin (t +T ′), where A =
√
c2x + c

2

y and

T ′ = arctan (cx /cy ). We use a change of variable u = t +T ′
. Then,

the first integral on the RHS of Eq. (20) can be rewritten as∫ Ti

0

sin (t −Ti )Pl (cx cos t + cy sin t) dt

=
1

A

∫ Ti+T ′

T ′
A sin (u − (Ti +T

′))Pl (A sinu) du (42)

Using the angle difference identity for sine, the formula becomes

1

A

∫ Ti+T ′

T ′
A sin (u) cos (Ti +T

′)Pl (A sinu) du −

1

A

∫ Ti+T ′

T ′
A cos (u) sin (Ti +T

′)Pl (A sinu) du . (43)

Since h = A sin (u) and u = t + T ′
, we know that

d

du h = A cos (u)

and
d

dt u = 1. Therefore, the formula can be further simplified as

cos (Ti +T
′)

A

∫ Ti+T ′

T ′
hPl (h) du −

sin (Ti +T
′)

A

∫ Ti+T ′

T ′
(
d

du
h)Pl (h) du

=
cos (Ti +T

′)

A

∫ Ti

0

hPl (h) dt︸           ︷︷           ︸
=:Cl

−
sin (Ti +T

′)

A

∫ Ti

0

(
d

dt
h)Pl (h) dt︸                 ︷︷                 ︸
=: El

.

(44)

Using the same technique, the second integral on the RHS of

Eq. (20) can be expressed as∫ Ti

0

sin (t)Pl (cx cos t + cy sin t) dt

=
1

A

∫ Ti+T ′

T ′
A sin (u −T ′)Pl (A sinu) du

=
1

A

∫ Ti+T ′

T ′
A sin (u) cos (T ′)Pl (A sinu) du −

1

A

∫ Ti+T ′

T ′
A cos (u) sin (T ′)Pl (A sinu) du

=
cos (T ′)

A

∫ Ti

0

hPl (h) dt︸           ︷︷           ︸
=:Cl

−
sin (T ′)

A

∫ Ti

0

(
d

dt
h)Pl (h) dt︸                 ︷︷                 ︸
=: El

. (45)
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