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1 DERIVATION OF THE INTERIOR TERM
In what follows, we derive Eq. (20) of the paper.
We first apply integration by parts to the left-hand side of this

equation, obtaining

−
∫
𝛀̂

G𝛀̂ Δ
𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

)
d𝛀̂ = −

∫
𝛀̂

∇
𝛀̂
·
(
G𝛀̂∇

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

))
d𝛀̂

+
∫
𝛀̂

(
∇
𝛀̂
G𝛀̂

)
· ∇

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

)
d𝛀̂.

(1)

where G𝛀̂ denotes G𝛀̂ (𝒑 ↔ 𝒒) as a function of 𝒒 (i.e., with 𝒑 fixed).
Applying the divergence theorem to the first integral on the right-

hand side of Eq. (1) gives

−
∫
𝛀̂

∇
𝛀̂
·
(
G𝛀̂ ∇

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

))
d𝛀̂

= −
∫
𝜕𝛀̂

G𝛀̂

(
−𝒏 · ∇

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

))
d𝜕𝛀̂ = 0,

(2)

where the second equality follows the fact that G𝛀̂ (𝒑 ↔ 𝒔) = 0 for
all 𝒔 on the domain boundary 𝜕𝛀̂.

For the second term on the right-hand side of Eq. (1), we also apply
integration by parts followed by the divergence theorem, yielding∫

𝛀̂

(
∇
𝛀̂
G𝛀̂

)
· ∇

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

)
d𝛀̂

=

∫
𝛀̂

∇
𝛀̂
·
((
𝒗 · ∇

𝛀̂
𝑢

)
∇
𝛀̂
G𝛀̂

)
d𝛀̂ −

∫
𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

) (
∇
𝛀̂
· ∇

𝛀̂
G𝛀̂

)
︸           ︷︷           ︸

=Δ
𝛀̂
G𝛀̂

d𝛀̂

=

∫
𝜕𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

) (
−𝒏 · ∇

𝛀̂
G𝛀̂

)
︸           ︷︷           ︸

= −P 𝛀̂

d𝜕𝛀̂ −
∫
𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

) (
−𝛿𝒑

)
d𝛀̂

= −
∫
𝜕𝛀̂

P𝛀̂ (𝒑 → 𝒔)
(
𝒗 (𝒔) · (∇

𝛀̂
𝑢) (𝒔)

)
d𝒔 + 𝒗 (𝒑) · ∇

𝛀̂
𝑢 (𝒑),

(3)

where 𝒏 is the inward unit-normal.
Lastly, we obtain Eq. (20) of the paper by adding Eqs. (2) and (3).
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Relaxing assumptions. As stated in the paper, we assume that the
source function 𝑓 is independent of the parameter 𝜃 to simplify
the derivation. With this assumption relaxed, Eq. (17) of the paper
becomes

Δ
𝛀̂
(𝜕𝜃𝑢) = Δ

𝛀̂

(
𝒗 · ∇

𝛀̂
𝑢

)
− 𝜕𝜃 𝑓 , (4)

which in turn causes Eq. (22) of the paper to also include an interior
component:

(𝜕𝜃𝑢) (𝒑) = −
∫
𝛀̂

G𝛀̂ (𝒑 ↔ 𝒒) [(𝜕𝜃 𝑓 ) (𝒒)] d𝒒︸                                     ︷︷                                     ︸
interior

+

∫
𝜕𝛀̂

P𝛀̂ (𝒑 → 𝒔)
(
𝜕𝜃 𝑔(𝒔) − 𝒗 (𝒔) · ∇

𝛀̂
𝑢 (𝒔)

)
d𝒔︸                                                       ︷︷                                                       ︸

boundary

.

(5)

2 DIFFERENTIAL KERNELS AND CONTROL VARIATES
Let 𝒔𝑙 := 𝒔 + 𝑙 𝒏(𝒔) be a point for all 𝑙 > 0. Then, 𝒔𝑙 resides in the
interior of the domain 𝛀̂ when 𝑙 is sufficiently small. In this case, it
holds that

𝑢 (𝒔𝑙 ) =
∫
𝐵𝒄

𝑓 (𝒚)𝐺𝐵𝒄 (𝒔𝑙 ↔ 𝒚) d𝒚︸                            ︷︷                            ︸
interior

+

∫
𝜕𝐵𝒄

𝑢 (𝒛) 𝑃𝐵𝒄 (𝒔𝑙 → 𝒛) d𝒛︸                            ︷︷                            ︸
boundary

,

(6)

where𝐺𝐵𝒄 and 𝑃𝐵𝒄 are Green’s function and Poisson kernel associ-
ated with the ball 𝐵𝒄 .

2.1 Differential Kernels
Differentiating both sides of Eq. (6) with respect to 𝑙 and evaluating
at 𝑙 = 𝑙0 produces:[

d
d𝑙
𝑢 (𝒔𝑙 )

]
𝑙=𝑙0

=

∫
𝐵𝒄

𝑓 (𝒚)
[
d
d𝑙
𝐺𝐵𝒄 (𝒔𝑙 ↔ 𝒚)

]
𝑙=𝑙0

d𝒚︸                                       ︷︷                                       ︸
interior

+

∫
𝜕𝐵𝒄

𝑢 (𝒛)
[
d
d𝑙
𝑃𝐵𝒄 (𝒔𝑙 → 𝒛)

]
𝑙=𝑙0

d𝒛︸                                        ︷︷                                        ︸
boundary

,

(7)

where the left-hand side gives the directional derivative of 𝑢 at 𝒔𝑙0
in the direction 𝒏(𝒔). In other words,

[ d
d𝑙𝑢 (𝒔𝑙 )

]
𝑙=𝑙0

= 𝒏(𝒔) · ∇𝑢 (𝒔𝑙0 ).



2 • Yu, Wu, Zhou, and Zhao

It follows that [
d
d𝑙
𝑢 (𝒔𝑙 )

]
𝑙=0

= 𝒏(𝒔) · ∇𝑢 (𝒔) = 𝜕𝒏(𝒔 )𝑢. (8)

Further, according to Eq. (4) of the paper, it holds that[
d
d𝑙
𝐺𝐵𝒄 (𝒔𝑙 ↔ 𝒚)

]
𝑙=0

= 𝑃𝐵𝒄 (𝒚 → 𝒔) . (9)

Lastly, taking the limits of 𝑙0 ↓ 0 on both sides of Eq. (7) produces
Eq. (25) of the paper with the differential kernel 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛)
defined as

𝜕𝒏(𝒔 )𝑃
𝐵𝒄 (𝒔 → 𝒛) := lim

𝑙0↓0

[
d
d𝑙
𝑃𝐵𝒄 (𝒔𝑙 ↔ 𝒛)

]
𝑙=𝑙0

. (10)

In practice, we evaluate the right-hand side of Eq. (10) by symboli-
cally differentiating the Poisson kernel 𝑃𝐵𝒄 and evaluating the result
at 𝑙 = 0.

2.2 Our Control Variates
We now derive the control variates in Eq. (26) of the main paper
from Eq. (25).

Interior component. Let ℎ be the solution of the following Pois-
son problem over the ball 𝐵𝒄 with constant source and boundary
functions:

Δℎ = −1 on 𝐵𝒄 ,
ℎ = 0 on 𝜕𝐵𝒄 .

(11)

Then, according to the representation formula, we have

ℎ(𝒔𝑙 ) =
∫
𝐵𝒄

𝐺𝐵𝒄 (𝒔𝑙 ↔ 𝒚) d𝒚︸                    ︷︷                    ︸
interior

, (12)

for any positive 𝑙 near zero. Differentiating both sides of this equa-
tion with respect to 𝑙 and evaluating at 𝑙 = 0 produces:[

d
d𝑙
ℎ(𝒔𝑙 )

]
𝑙=0

=

∫
𝐵𝒄

𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚. (13)

On the other hand, it is easy to verify that the Poisson equation (11)
has the analytical solution

ℎ(𝒙) = 𝑅2 − ∥𝒙 − 𝒄 ∥2
2𝑛

, (14)

where 𝑅 and 𝑛 denote the radius and dimensionality of the ball 𝐵𝒄 ,
respectively.
Evaluating the left-hand side of Eq. (13) using Eq. (14) yields∫

𝐵𝒄

𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚 =
𝑅

𝑛
, (15)

which in turn produces the interior component of Eq. (27) of the
main paper via∫

𝐵𝒄

𝑓 (𝒚) 𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚

=

∫
𝐵𝒄

(𝑓 (𝒚) − 𝑓 (𝒔) + 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚

=

∫
𝐵𝒄

(𝑓 (𝒚) − 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚 + 𝑓 (𝒔) 𝑅
𝑛
.

(16)

Boundary component. Since the Poisson kernel 𝑃𝐵𝒄 (𝒔 → 𝒛) is
essentially a probability distribution of 𝒛 over the boundary 𝜕𝐵𝒄
(with 𝒔 fixed), it holds that∫

𝜕𝐵𝒄

[
d
d𝑙

𝑃𝐵𝒄 (𝒔𝑙 → 𝒛)
]
𝑙=𝑙0

d𝒛

=

[
d
d𝑙

∫
𝜕𝐵𝒄

𝑃𝐵𝒄 (𝒔𝑙 → 𝒛) d𝒛︸                     ︷︷                     ︸
≡ 1

]
𝑙=𝑙0

≡ 0, (17)

for any 𝑙0. Thus, we have∫
𝜕𝐵𝒄

𝜕𝒏(𝒔 )𝑃
𝐵𝒄 (𝒔 → 𝒛) d𝒛 ≡ 0, (18)

which allows us to subtract 𝑔(𝒔)
∫
𝜕𝐵𝒄

𝜕𝒏(𝒔 )𝑃
𝐵𝒄 (𝒔 → 𝒛) d𝒛 from the

boundary component of Eq. (25) of the paper, producing that of
Eq. (26).

2.3 Proof of Convergence
In the following, we show that the integrals of Eq. (26) resulting
from our control variates converge.

Interior integral. Without loss of generality, we examine the inte-
grand of Eq. (26)’s interior component when 𝑙 approaches zero:

lim
𝑙↓0

(
(𝑓 (𝒔𝑙 ) − 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
. (19)

Applying Taylor expansion to 𝑓 (𝒔𝑙 )—which we consider as a
function of 𝑙—at 𝑙 = 0 produces

𝑓 (𝒔𝑙 ) = 𝑓 (𝒔) + 𝑙 𝜕𝒏(𝒔 ) 𝑓 (𝒔) + 𝑜 (𝑙2). (20)

Thus, we have

lim
𝑙↓0

(
(𝑓 (𝒔𝑙 ) − 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
= lim

𝑙↓0

((
𝑙 𝜕𝒏(𝒔 ) 𝑓 (𝒔) + 𝑜 (𝑙2)

)
𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
= 𝜕𝒏(𝒔 ) 𝑓 (𝒔) lim

𝑙↓0

(
𝑙 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
+ lim

𝑙↓0

(
𝑜 (𝑙2) 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
.

(21)

When𝐵𝒄 is a 2D or 3D sphere, the second-order term in this equation
converges:

lim
𝑙↓0

(
𝑜 (𝑙2) 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
< ∞. (22)

The first-order term lim𝑙↓0
(
𝑙 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔)

)
, on the other hand, be-

haves differently between 2D and 3D. In 2D, the limit equals a finite
value; In 3D, 𝑙 𝑃𝐵𝒄 (𝒔𝑙 → 𝒔) is a weak singularity as 𝑙 approaches
zero, but integrating this term over the interior of the sphere 𝐵𝒄
produces a finite result.

Boundary integral. We now show the convergence of the bound-
ary integral of Eq. (26) of the paper. We focus on the 2D case since
the 3D case follows a similar proof.
We first parameterize the boundary 𝜕𝐵𝒄 using 𝒛𝜙 such that the

angle between the vectors (𝒔 − 𝒄) and (𝒛𝜙 − 𝒄) equals 𝜙 . Under this
parameterization, it holds that 𝒛0 = 𝒔.



A Differential Monte Carlo Solver For the Poisson Equation: Supplemental Document • 3

For any 𝜙 , applying Taylor expansion at 𝜙 = 0 gives

𝑢 (𝒛𝜙 ) = 𝑔(𝒔) + 𝜙 𝜕𝒕 (𝒔 )𝑢 (𝒔) + 𝑜 (𝜙2), (23)

𝑢 (𝒛−𝜙 ) = 𝑔(𝒔) − 𝜙 𝜕𝒕 (𝒔 )𝑢 (𝒔) + 𝑜 (𝜙2), (24)

where 𝜕𝒕 (𝒔 )𝑢 (𝒔) denotes the tangential derivative of𝑢 at 𝒔. It follows
that ∫

𝜕𝐵𝒄

(𝑢 (𝒛) − 𝑔(𝒔)) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛) d𝒛

= 𝑅

∫ 𝜋

−𝜋
(𝑢 (𝒛𝜙 ) − 𝑔(𝒔)) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛𝜙 ) d𝜙

= 𝑅

∫ 𝜋

0
(𝑢 (𝒛𝜙 ) + 𝑢 (𝒛−𝜙 ) − 2𝑔(𝒔)) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛𝜙 ) d𝜙

= 𝑅

∫ 𝜋

0
𝑜 (𝜙2) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛𝜙 ) d𝜙.

(25)

When 𝐵𝒄 is a 2D ball, the integrand 𝑜 (𝜙2) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛𝜙 )
converges when 𝜙 approaches zero:

lim
𝜙↓0

𝑜 (𝜙2) 𝜕𝒏(𝒔 )𝑃𝐵𝒄 (𝒔 → 𝒛𝜙 ) = lim
𝜙↓0

𝑜 (𝜙2)
2𝜋 (cos𝜙 − 1) < ∞, (26)

which ensures the convergence of the boundary integral.
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