
A Differential Monte Carlo Solver For the Poisson Equation
Zihan Yu

zihay19@uci.edu
University of California, Irvine & NVIDIA

USA

Lifan Wu
lifanw@nvidia.com

NVIDIA
USA

Zhiqian Zhou
zhiqiaz8@uci.edu

University of California, Irvine
USA

Shuang Zhao
shz@ics.uci.edu

University of California, Irvine & NVIDIA
USA

(a) Solution (b) Derivative

Negative Positive

Figure 1: We introduce a new grid-free technique to estimate derivatives of solutions to the Poisson equation with respect to
arbitrary parameters including domain shapes. This example includes a 3D Laplace problemwith Dirichlet boundary conditions
on a wired bunny shape. We visualize the solution to this problem in two cross-sectional planes in (a) and the derivative of this
solution (with respect to the translation of the bunny) estimated with our method in (b).

ABSTRACT
The Poisson equation is an important partial differential equation
(PDE) with numerous applications in physics, engineering, and
computer graphics. Conventional solutions to the Poisson equation
require discretizing the domain or its boundary, which can be very
expensive for domains with detailed geometries. To overcome this
challenge, a family of grid-free Monte Carlo solutions has recently
been developed. By utilizing walk-on-sphere (WoS) processes, these

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657460

techniques are capable of efficiently solving the Poisson equation
over complex domains.

In this paper, we introduce a general technique that differentiates
solutions to the Poisson equation with Dirichlet boundary condi-
tions. Specifically, we devise a new boundary-integral formulation
for the derivatives with respect to arbitrary parameters including
shapes of the domain. Further, we develop an efficient walk-on-
spheres technique based on our new formulation—including a new
approach to estimate normal derivatives of the solution field. We
demonstrate the effectiveness of our technique over baseline meth-
ods using several synthetic examples.

CCS CONCEPTS
•Mathematics of computing→ Partial differential equations;
Integral equations; Probabilistic algorithms.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641519.3657460

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Yu, Wu, Zhou, and Zhao

KEYWORDS
Monte Carlo methods, differentiation, walk on spheres

ACM Reference Format:
Zihan Yu, Lifan Wu, Zhiqian Zhou, and Shuang Zhao. 2024. A Differential
Monte Carlo Solver For the Poisson Equation. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Conference Papers
’24 (SIGGRAPH Conference Papers ’24), July 27–August 01, 2024, Denver, CO,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3641519.
3657460

1 INTRODUCTION
The Poisson equation is an elliptic partial differential equation (PDE)
commonly used to model various phenomena including heat con-
duction, fluid dynamics, and electrostatics and, thus, has numerous
applications in physics, engineering, and computer graphics.

Conventionally, the Poisson equation is usually solved using nu-
merical methods such as the finite element method (FEM) that first
discretizes the problem and then solves the resulting system of lin-
ear equations. Unfortunately, for problems over complex domains,
the discretization can become extremely expensive, significantly
limiting the practicality of these discretization-based methods.

Recently, a family of grid-free Monte Carlo methods [Sawhney
and Crane 2020; Sawhney et al. 2022; Qi et al. 2022; Sawhney et al.
2023] utilizing the walk-on-spheres (WoS) process [Muller 1956]
have been introduced to solve second-order linear elliptical PDEs.
These techniques do not require discretizing domains or boundaries,
allowing them to scale well to problems with complex domain
geometries.

In this paper, we focus on the problem of differentiating solu-
tions to the Poisson equation with respect to arbitrary parameters—
including the shape of the domain. Techniques capable of estimat-
ing these derivatives efficiently will be a key ingredient for solving
inverse Poisson problems—which involve inferring the source, the
boundary condition, or domain shape of a Poisson problem given
the solution scalar field.

Previously, derivatives of PDE solutions have mostly been esti-
mated using discretization-based methods (by applying automatic
differentiation to both the discretization and the linear solve steps)
and, hence, have difficulties scaling to domains with complex ge-
ometries.

To address this problem, we introduce a grid-free Monte Carlo
technique utilizing the walk-on-spheres (WoS) process. Our method
offers the efficiency to handle domains with complex geometries
and the generality of differentiating with respect to arbitrary pa-
rameters including the shape of the domain.

Concretely, our contributions include:
• Devising a new boundary-integral formulation for derivatives
of solutions to the Poisson equation with respect to arbitrary
parameters (§4).

• Developing a new Monte Carlo algorithm based on our new
formulation (§5). A key component of our algorithm is a new
walk-on-spheres (WoS) estimator for normal derivatives of the
solution field over the domain boundary (§5.2).
We evaluate our technique empirically in §6 using several syn-

thetic examples.

2 RELATEDWORKS
Grid-free Monte Carlo PDE solvers. Sawhney and Crane [2020]

have introduced to graphics a grid-free Monte Carlo technique for
solving Poisson equations with Dirichlet boundary conditions by
leveraging the walk-on-spheres (WoS) process [Muller 1956]. This
technique does not require discretizing space and, therefore, scales
well to problems over complex domains. Later, this technique has
been generalized to handle second-order linear elliptic PDEs (e.g.,
screened Poisson equations) [Sawhney et al. 2022] and Neumann
boundary conditions [Sawhney et al. 2023].

Further, several techniques have been developed to speed up
the convergence of WoS solvers. Qi et al. [2022], for instance, have
proposed a bidirectional sampling method capable of handling prob-
lems with concentrated sources. Miller et al. [2023] have introduced
a caching scheme to allow path samples generated by WoS to be
shared among multiple queries.

As an alternative toWoS, Sugimoto et al. [2023] have developed a
technique based on the walk-on-boundary (WoB) process [Sabelfeld
1982]. Compared with the WoS-based methods, this technique usu-
ally offers better performance over (mostly) convex domains.

Differentiable grid-free solvers. Despite the great progress made
for “forward” solvers, differentiable grid-free PDE solvers have re-
mained lacking. Recently, Yilmazer et al. [2022] have differentiated
the grid-free solver by Sawhney et al. [2022] over fixed domains.
Additionally, for solving inverse diffusion curve [Orzan et al. 2008]
problems, Zhao et al. [2018] have derived shape derivatives of solu-
tions to Laplace’s equation—a special case of the Poisson equation
with zero source. Numerically, they relied on conventional finite-
element method (FEM) to compute the derivatives.

Our mathematical formulation—which we will present in §4—is
a significant generalization of these works.

Shape optimization. As a subfield of optimal control theory, shape
optimization [Sokolowski and Zolésio 1992; Haslinger and Mäkinen
2003; Delfour and Zolsio 2010; Walker 2015] tackles the problem of
finding a bounded domain 𝛀 to minimize a continuous functional
on 𝛀. Our theory (§4) enables solving shape optimizations with
Poisson-PDE constraints—which is significantly more challenging
than conventional shape optimization problems. Additionally, our
grid-free Monte Carlo estimators (§5) allow the optimization of
highly detailed shapes.

3 PRELIMINARIES
In general, the Poisson equation (with Dirichlet boundary condition)
takes the form:

Δ𝑢 = −𝑓 on 𝛀,
𝑢 = 𝑔 on 𝜕𝛀,

(1)

where 𝛀 is an open subset of R𝑛 with (closed) boundary 𝜕𝛀.1
Additionally, 𝑓 : 𝛀 ↦→ R and 𝑔 : 𝜕𝛀 ↦→ R are, respectively, the
source and boundary functions.

Representation formula. It has been shown that the solution 𝑢 of
the Poisson equation (1) can be expressed using the representation

1In this paper, we focus on 2D and 3D domains (i.e., 𝑛 = 2, 3).

https://doi.org/10.1145/3641519.3657460
https://doi.org/10.1145/3641519.3657460

A Differential Monte Carlo Solver For the Poisson Equation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

formula [Evans 2010] as

𝑢 (𝒙) =
∫
𝛀

𝑓 (𝒚) G𝛀 (𝒙 ↔ 𝒚) d𝒚︸ ︷︷ ︸
interior

+
∫
𝜕𝛀

𝑔(𝒛) P𝛀 (𝒙 → 𝒛) d𝒛︸ ︷︷ ︸
boundary

. (2)

In this equation, G𝛀 is the (domain-specific) Green’s function
satisfying that, for all 𝒙,𝒚 ∈ 𝛀, G𝛀 (𝒙 ↔ 𝒚) = 𝑢′ (𝒚) where 𝑢′ is
the solution of a Poisson problem with delta sources:

Δ𝑢′ = −𝛿𝒚 (𝒙) on 𝛀,
𝑢′ = 0 on 𝜕𝛀,

(3)

with 𝛿𝒚 being the impulse function centered at 𝒚.
In addition, P𝛀 is the Poisson kernel associated with the do-

main 𝛀. For all 𝒙 ∈ 𝛀 and 𝒛 ∈ 𝜕𝛀, it holds that

P𝛀 (𝒙 → 𝒛) = 𝜕𝒏(𝒛)G𝛀 (𝒙 ↔ 𝒛) = 𝒏(𝒛) · 𝜕
𝜕𝒛
G𝛀 (𝒙 ↔ 𝒛), (4)

where 𝒏 indicates the inward unit-normal field of the boundary 𝜕𝛀,
𝜕𝒏(𝒛)G𝛀 (𝒙 ↔ 𝒛) is the normal derivative of G𝛀 (𝒙 ↔ 𝒛) at 𝒛
(with 𝒙 fixed), and “·” denotes the dot-product operator.

Except for domains with very simple shapes (e.g., spheres), the
Green’s function G𝛀 and Poisson kernel P𝛀 generally have no
analytical expressions.

Integral-equation formulation. Besides Eq. (2), it is also possible
to write the solution𝑢 as the solution of an integral equation [Evans
2010]:

𝑢 (𝒙) =
∫
𝐵𝒙

𝑓 (𝒚)𝐺 (𝒙 ↔ 𝒚) d𝒚︸ ︷︷ ︸
interior

+
∫
𝜕𝐵𝒙

𝑢 (𝒛) 𝑃 (𝒙 → 𝒛) d𝒛︸ ︷︷ ︸
boundary

. (5)

where:
• 𝐵𝒙 ⊆ 𝛀 ∪ 𝜕𝛀 denotes a ball centered at 𝒙 ;

• 𝐺 and 𝑃 are, respectively, the Green’s function and Poisson kernel
associated with the ball 𝐵𝒙 . Please see the work by Sawhney and
Crane [2020] for the analytical expressions of these functions.

Walk on spheres. The integral equation of Eq. (5) can be solved
numerically using an algorithm called walk on spheres—which we
briefly describe in the following.

Let 𝛀𝜖 ⊂ 𝛀 be a 𝜖-shell comprised of all points 𝒙 ∈ 𝛀 no more
than 𝜖 distance away from the domain boundary 𝜕𝛀 (for some
small 𝜖 ∈ R+). Then, the solution 𝑢 (𝒙) of the Poisson equation (1)
can be approximated using the Monte Carlo estimator introduced
to graphics by Sawhney and Crane [2020]:

⟨𝑢𝜖 (𝒙)⟩wos =

𝑔(𝒙⊥), (𝒙 ∈ 𝛀𝜖)
𝑓 (𝒚)𝐺 (𝒙↔𝒚)

𝑝 (𝒚) + ⟨𝑢𝜖 (𝒛) ⟩wos 𝑃 (𝒙→𝒛)
𝑝 (𝒛) , (𝒙 ∉ 𝛀𝜖)

(6)
where:
• 𝒙⊥ is the projection of 𝒙 on 𝜕𝛀;

• The points 𝒚 and 𝒛 are drawn, respectively, from the ball 𝐵𝒙 and
its boundary 𝜕𝐵𝒙 with the probability densities 𝑝 (𝒚) and 𝑝 (𝒛);

• ⟨𝑢𝜖 (𝒛)⟩wos is estimated recursively.

Table 1: List of symbols commonly used in this paper.

Symbol Definition

𝑢 solution to the Poisson equation (1)
𝑓 source function of the Poisson equation (1)
𝑔 boundary function of the Poisson equation (1)
𝛀, 𝜕𝛀 evolving domain and its boundary

�̂�, 𝜕�̂� reference domain and its boundary
X(·, 𝜃) one-to-one mapping from �̂� to 𝛀 (𝜃)
X−1 (·, 𝜃) inverse of X(·, 𝜃) , transforms 𝛀 (𝜃) to �̂�

X∗ pull-back operator
�̂� pull-back of the solution 𝑢 (i.e., �̂� := X∗𝑢)
𝑔 pull-back of the boundary function 𝑔 (i.e., 𝑔 := X∗𝑔)

G𝛀 , G�̂� Green’s functions associated with 𝛀 and �̂�

P𝛀 , P �̂� Poisson kernels associated with 𝛀 and �̂�

𝜕𝜃 derivative wrt. 𝜃 at 𝜃 = 0 defined in Eq. (7)
𝒗 “velocity” of a point defined in Eq. (12)

𝛀𝜖 , �̂�𝜖 𝜖-shells of the evolving 𝛀 and the reference domain �̂�

𝐵𝒙 , 𝐵𝒄 balls centered at 𝒙 and 𝒄

Prior works (e.g., [Muller 1956; Delaurentis and Romero 1990]) have
shown that (the expected value of) Eq. (6) closely approximates the
true solution 𝑢 when 𝜖 is near zero.

Additionally, the estimator outlined in Eq. (6) can be further im-
proved by using, for example, bidirectional sampling [Qi et al. 2022]
or caching [Miller et al. 2023]. We opt for the “basic” version in this
paper since these improvements are orthogonal to our technique.

4 BOUNDARY-INTEGRAL FORMULATION
We now derive the derivative 𝜕𝑢/𝜕𝜃 of the solution 𝑢 to the Poisson
equation (1) with respect to some parameter 𝜃 ∈ R. Without loss of
generality, we assume the derivative to be evaluated to be at 𝜃 = 0.
In other words, letting

𝜕𝜃ℎ :=
[
𝜕ℎ

𝜕𝜃

]
𝜃=0

, for any ℎ, (7)

our goal is to obtain (𝜕𝜃𝑢) (𝒙) for any fixed 𝒙 ∈ 𝛀(0).

Simple case. When the parameter 𝜃 controls the source and
boundary functions (i.e., 𝑓 and 𝑔) only (but not the domain 𝛀),
the derivative 𝜕𝜃𝑢 is essentially the solution of another Poisson
problem with the source and boundary functions differentiated:

Δ(𝜕𝜃𝑢) = −𝜕𝜃 𝑓 on 𝛀,
𝜕𝜃𝑢 = 𝜕𝜃𝑔 on 𝜕𝛀.

(8)

As demonstrated by Yilmazer et al. [2022], Eq. (8) can be solved
using the same walk-on-spheres method outlined in Eq. (6).

General case. When the domain 𝛀 evolves with the parameter 𝜃 ,
on the other hand, the evaluation of the derivative 𝜕𝜃𝑢 becomes
more challenging. To this end, one solution is to differentiate the
integral equation (5) using Reynolds transport theorem [1903]. Un-
fortunately, doing so requires handling discontinuities emerging
from the dependencies of the ball 𝐵𝒙 and the 𝜖-shell 𝛀𝜖 on 𝜃 .

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Yu, Wu, Zhou, and Zhao

We introduce a new formulation for the derivative 𝜕𝜃𝑢. As we
will demonstrate in §5, our formulation allows the development of
significantly more efficient Monte Carlo estimators.

In what follows, we present the material-form parameterization
of the domain in §4.1 before introducing our derivation of the
derivative 𝜕𝜃𝑢 in §4.2.

We summarize the commonly used symbols in Table 1.

4.1 Material-Form Parameterization
To facilitate the differentiation of the solution 𝑢, we first parame-
terize the evolving domain 𝛀(𝜃) using a fixed one. This parameter-
ization is known as the material or Lagrangian form.

Let
�̂� := 𝛀(0), (9)

be a reference domain that is independent of the parameter 𝜃 .
Then, the evolution of the domain 𝛀(𝜃) can be expressed using a
one-to-one mapping X(·, 𝜃) that, for any 𝜃 , transforms the reference
domain �̂� to the evolving 𝛀(𝜃) and the boundary 𝜕�̂� to 𝜕𝛀(𝜃). We
call any 𝒙 ∈ 𝛀(𝜃) a spatial point and 𝒑 ∈ �̂� amaterial point.

The pull-back operator. Any scalar field ℎ over the evolving do-
main 𝛀(𝜃) can be transformed to another scalar field X∗ℎ over the
reference domain �̂� using the pull-back operator X∗ such that
That is,

(X∗ℎ) (𝒑) := ℎ(X(𝒑, 𝜃)), for any 𝒑 ∈ �̂�. (10)

Special case. At𝜃 = 0, according to Eq. (9), the evolving domain𝛀
coincides with the reference one �̂�. In this case, we assume the
mapping X(·, 0) and its inverse X−1 (·, 0) to both reduce to identity
maps. It follows that the induced pull-back operator also reduces
to identity.

4.2 Our Derivation
We now derive the derivative of 𝑢 based on the material-form
parameterization presented in §4.1.

Assumptions. To ensure the continuity of the solution 𝑢, we
assume that (i) the source 𝑓 and boundary functions 𝑔 are both
𝐶0-continuous and differentiable; and (ii) the domain boundary 𝜕𝛀

is 𝐺1 (with continuous surface normal).
Additionally, to simplify derivations, we assume that (iii) the

source 𝑓 and boundary function 𝑔 are defined over the entirety
of the ambient space (e.g., R2 or R3) in which the domain 𝛀(𝜃)
evolves, and (iv) 𝑓 is independent of the parameter 𝜃 . As discussed
in the supplement, assumptions (iii) and (iv) can be relaxed easily.

Derivation outline. For any spatial point 𝒙 satisfying 𝒙 = X(𝒑, 𝜃)
for some fixed material point 𝒑 and all 𝜃 ∈ R, the material deriv-
ative

[d
d𝜃 𝑢 (𝒙)

]
𝜃=0 follows the chain rule:[
d
d𝜃

𝑢 (𝒙)
]
𝜃=0

= (𝜕𝜃𝑢) (𝒙) + 𝒗 (𝒑) · ∇𝑢 (𝒙), (11)

where

𝒗 (𝒑) :=
[
d𝒙
d𝜃

]
𝜃=0

= 𝜕𝜃X(𝒑, 𝜃), (12)

captures the change rate (or “velocity”) of 𝒙 with respect to 𝜃 .
We note that, on the left-hand side of Eq. (11), the dependency

of 𝒙 on the parameter 𝜃 is considered when taking the derivative

(which is further demonstrated in Eq. (13) below). On the other
hand, the term (𝜕𝜃𝑢) (𝒙) of our interest on the right-hand side
considers only the dependency of 𝑢 on 𝜃 .

Based on Eq. (11), we derive the partial derivative (𝜕𝜃𝑢) (𝒙) in the
following by first obtaining the material derivative

[d
d𝜃 𝑢 (𝒙)

]
𝜃=0

and then subtracting 𝒗 · ∇𝑢.

The material derivative. Let 𝑢 := X∗𝑢 be the solution 𝑢 of the
Poisson equation (1) mapped to the reference domain using the
pull-back operator X∗. Given any spatial point 𝒙 = X(𝒑, 𝜃) for
some fixed material point 𝒑 and all 𝜃 ∈ R, the material derivative[d
d𝜃 𝑢 (𝒙)

]
𝜃=0 satisfies that[
d
d𝜃

𝑢 (𝒙)
]
𝜃=0

= lim
𝜖→0

𝑢𝜖 (X(𝒑, 𝜖)) − 𝑢0 (X(𝒑, 0))
𝜖

= lim
𝜖→0

𝑢𝜖 (𝒑) − 𝑢0 (𝒑)
𝜖

=: (𝜕𝜃𝑢) (𝒑),
(13)

where: 𝑢𝜖 and 𝑢0 indicate, respectively, the solutions of the Poisson
equation (1) when 𝜃 = 𝜖 and 𝜃 = 0; and 𝑢𝜖 := X∗𝑢𝜖 and 𝑢0 := X∗𝑢0.

According to Eq. (13), the problem of evaluating the material de-
rivative

[d
d𝜃 𝑢 (𝒙)

]
𝜃=0 amounts to evaluating the derivative (𝜕𝜃𝑢) (𝒑),

which we derive in the following.

Evaluating 𝜕𝜃𝑢. When 𝜃 = 0, it can be shown (see page 23 of the
book by Henry [2005]) that

𝜕𝜃
(
X∗ (Δ𝑢)

)
= 𝒗 · ∇

�̂�
(Δ

�̂�
𝑢) + Δ

�̂�

(
𝜕𝜃𝑢 − 𝒗 · ∇

�̂�
𝑢

)
, (14)

where 𝒗 (𝒑) is defined in Eq. (12), and ∇
�̂�
and Δ

�̂�
denote, respec-

tively, the gradient and Laplacian operators over the reference
domain �̂�.

As discussed in §4.1, at 𝜃 = 0 the reference domain �̂� coincides
with the evolving one 𝛀(𝜃), causing the mapping X and the induced
pull-back operator X∗ to both reduce to identity. This allows the
left-hand side of Eq. (14) to become

𝜕𝜃
(
X∗ (Δ𝑢)

)
= 𝜕𝜃 (X∗ (−𝑓)) = −X∗ (𝜕𝜃 𝑓) − 𝒗 · ∇𝑓 = −𝒗 · ∇𝑓 , (15)

where the last equality follows the assumption that the source
function 𝑓 is independent of 𝜃 (i.e., 𝜕𝜃 𝑓 = 0).

Additionally, since the solution 𝑢 and its pull-back 𝑢 coincide
when 𝜃 = 0, we have ∇

�̂�
(Δ

�̂�
𝑢) = ∇(Δ𝑢) = −∇𝑓 . It follows that the

right-hand side of Eq. (14) becomes

−𝒗 · ∇𝑓 + Δ
�̂�

(
𝜕𝜃𝑢 − 𝒗 · ∇

�̂�
𝑢

)
. (16)

Given Eqs. (15) and (16), we have

Δ
�̂�
(𝜕𝜃𝑢) = Δ

�̂�

(
𝒗 · ∇

�̂�
𝑢

)
, (17)

in the interior of the reference domain �̂�.
Let 𝑔 := X∗𝑔 be the pull-back of the boundary function 𝑔. Then,

by applying pull-back X∗ and differentiation 𝜕𝜃 to both sides of the
Dirichlet boundary condition (i.e., 𝑢 = 𝑔) of the original Poisson
equation (1), we have

𝜕𝜃𝑢 = 𝜕𝜃𝑔 on 𝜕�̂�. (18)

Eqs. (17) and (18) define another Poisson problem over the fixed
reference domain �̂� with the solution 𝜕𝜃𝑢. Then, according to the

A Differential Monte Carlo Solver For the Poisson Equation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

representation formula (2), we have

(𝜕𝜃𝑢) (𝒑) = −
∫
�̂�

G�̂� (𝒑 ↔ 𝒒)
(
Δ
�̂�

(
𝒗 · ∇

�̂�
𝑢

))
(𝒒) d𝒒︸ ︷︷ ︸

interior

+

∫
𝜕�̂�

P�̂� (𝒑 → 𝒔) 𝜕𝜃 𝑔(𝒔) d𝒔︸ ︷︷ ︸
boundary

,

(19)

where G�̂� and P�̂� denote the Green’s function and the Poisson
kernel associated with the reference domain �̂�, respectively.

Completing the derivation. As shown in §1 of the supplemental
document, the interior term of Eq. (19) further satisfies

−
∫
�̂�

G�̂� (𝒑 ↔ 𝒒)
(
Δ
�̂�

(
𝒗 · ∇

�̂�
𝑢

))
(𝒒) d𝒒

= −
∫
𝜕�̂�

P�̂� (𝒑 → 𝒔)
(
𝒗 (𝒔) · (∇

�̂�
𝑢) (𝒔)

)
d𝒔 + 𝒗 (𝒑) · (∇

�̂�
𝑢) (𝒑).

(20)

Provided Eqs. (19, 20) and the fact by combining Eqs. (11, 13) that

(𝜕𝜃𝑢) (𝒙) = (𝜕𝜃𝑢) (𝒑) − 𝒗 (𝒑) · ∇𝑢 (𝒙)︸ ︷︷ ︸
=∇

�̂�
�̂� (𝒑)

, when 𝜃 = 0, (21)

we rewrite the derivative 𝜕𝜃𝑢 as one boundary integral:

(𝜕𝜃𝑢) (𝒑) =
∫
𝜕�̂�

P�̂� (𝒑 → 𝒔)
(
𝜕𝜃 𝑔(𝒔) − 𝒗 (𝒔) · ∇

�̂�
𝑢 (𝒔)

)
d𝒔, (22)

for any 𝒑 ∈ �̂� = 𝛀(0).

5 DIFFERENTIAL WALK-ON-SPHERES
We now introduce a new Monte Carlo estimator for the boundary
integral of Eq. (22). Our technique involves three main steps (see
Figure 2):
S.1 Drawing a material point 𝒔 from the domain boundary 𝜕�̂�

with a probability density that equals P�̂� (𝒑 → 𝒔) using a
walk-on-spheres process.

S.2 With the point 𝒔 determined, estimating the gradient ∇
�̂�
𝑢 (𝒔)

using another walk-on-spheres process.

S.3 Returning 𝜕𝜃 𝑔(𝒔) − 𝒗 (𝒔) · ∇
�̂�
𝑢 (𝒔) with the terms 𝜕𝜃 𝑔(𝒔) and

𝒗 (𝒔) computed analytically using automatic differentiation.
In what follows, we discuss the first two steps (S.1 and S.2) in detail.

5.1 Sampling Boundary Point
The first step (S.1) of our method involves sampling a material
point 𝒔 from the boundary 𝜕�̂� of the reference domain �̂� with the
probability density P�̂� (𝒑 → 𝒔) with 𝒑 fixed. Unfortunately, as
discussed in §3, the Poisson kernel P�̂� for an arbitrary domain �̂�

cannot be evaluated, let alone sampled, analytically.
To address this problem, we utilize a walk-on-sphere algorithm.

As outlined in Algorithm 1, this process essentially simulates a
particle 𝒒 ∈ �̂� that undergoes a Brownian motion. Starting from
the point 𝒑, the process returns the position of 𝒒 when it first
reaches the boundary 𝜕�̂�.

Figure 2: Our estimator: To estimate (𝜕𝜃𝑢) (𝒑) for some given
𝒑 ∈ �̂�, our method utilizes two walk-on-spheres (WoS) pro-
cesses. The first WoS (illustrated as dashed lines) constructs a
path from 𝒑 to a random surface point 𝒔 with the probability
P�̂� (𝒑 → 𝒔). Then, to estimate the normal derivative 𝜕𝒏(𝒔)𝑢,
we find the largest ball 𝐵𝒄 ⊆ �̂� (shown in green) tangent to
the boundary 𝜕�̂� at the point 𝒔. With the ball 𝐵𝒄 determined,
we antithetically sample a pair of points 𝒛 and 𝒛∗ on the
boundary 𝜕𝐵𝒄 of the ball and start the second WoS (shown as
dotted lines) from these locations to estimate the solutions
𝑢 (𝒛) and 𝑢 (𝒛∗). In addition, we draw a point 𝒚 inside the ball
𝐵𝒄 to evaluate contributions of the source function.

ALGORITHM 1: Sampling a material point 𝒔 ∈ 𝜕�̂� with the prob-
ability P �̂� (𝒑 → 𝒔)

1 SamplePoisson(𝒑; �̂�, 𝜖)
2 begin
3 𝒒← 𝒑;
4 while 𝒒 ∉ �̂�𝜖 do
5 Let 𝐵𝒒 be the largest ball centered at 𝒒 inside �̂�;
6 Draw 𝒒′ uniformly from the boundary 𝜕𝐵𝒒 of the ball 𝐵𝒒 ;
7 𝒒← 𝒒′;
8 end
9 Compute the projection 𝒔 of 𝒒 on the boundary 𝜕�̂�;

10 return 𝒔;
11 end

When 𝜖 approaches zero, according to Kakutani’s principle [Kaku-
tani 1944], the outcome 𝒔 of Algorithm 1 is distributed with a prob-
ability density that equals P�̂� (𝒑 → 𝒔). In practice, using 𝜖 > 0
leads to a bias of order 𝑂 (1/log 𝜖) [Binder and Braverman 2012],
which is negligible when 𝜖 is small.

5.2 Estimating Gradient At Domain Boundary
The second step (S.2) of ourmethod requires estimating the gradient
∇
�̂�
𝑢, which equals ∇𝑢 at 𝜃 = 0, at the point 𝒔 sampled on the

boundary (§5.1).
Let ∇

𝜕�̂�
𝑢 and 𝜕𝒏(𝒔)𝑢 denote the (vector-valued) surface gradient

and (scalar-valued) normal derivative of 𝑢, respectively. Then, for
all point 𝒔 on the boundary 𝜕�̂� = 𝜕𝛀(0), it holds that

∇𝑢 (𝒔) = ∇
𝜕�̂�

𝑢 (𝒔) + 𝒏(𝒔) 𝜕𝒏(𝒔)𝑢, (23)

where 𝒏(𝒔) denotes the inward unit-normal of 𝜕�̂� at 𝒔.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Yu, Wu, Zhou, and Zhao

On the right-hand side of Eq. (23), the surface gradient ∇
𝜕�̂�

𝑢 (𝒔)
equals the gradient ∇𝑔(𝒔) of the boundary function 𝑔 projected
onto the tangent space at 𝒔. Precisely,

∇
𝜕�̂�

𝑢 (𝒔) = ∇𝑔(𝒔) − 𝒏(𝒔) · ∇𝑔(𝒔). (24)

With the surface gradient ∇
𝜕�̂�

𝑢 (𝒔) obtained, our problem of
computing the gradient ∇𝑢 (𝒔) boils down to estimating the normal
derivative 𝜕𝒏(𝒔)𝑢. To this end, we introduce a new Monte Carlo
estimator.

Let 𝐵𝒄 ⊂ �̂� be a ball that is tangent to the domain boundary 𝜕�̂�

at 𝒔 and centered at some fixed 𝒄 ∈ �̂� (see Figure 2), and 𝐺𝐵𝒄 and
𝑃𝐵𝒄 be the Green’s function and Poisson kernel associated with 𝐵𝒄 .
Previously, Sawhney et al. [2022] have shown that both 𝐺𝐵𝒄 and
𝑃𝐵𝒄 have analytical expressions. Please refer to their work for the
exact forms of these kernels.

Our Monte Carlo estimator of the normal derivative 𝜕𝒏(𝒔)𝑢 is
based on the relation:

𝜕𝒏(𝒔)𝑢 =

∫
𝐵𝒄

𝑓 (𝒚) 𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚︸ ︷︷ ︸
interior

+

∫
𝜕𝐵𝒄

𝑢 (𝒛) 𝜕𝒏(𝒔)𝑃𝐵𝒄 (𝒔 → 𝒛) d𝒛︸ ︷︷ ︸
boundary

.

(25)

We derive this relation and formally define the differential kernel
𝜕𝒏(𝒔)𝑃

𝐵𝒄 (𝒔 → 𝒛) in §2.1 of the supplemental document.
Eq. (25) can be estimated using Monte Carlo integration. Unfor-

tunately, a naïve implementation would suffer from high variance
due to the singularities of the Poisson kernel 𝑃𝐵𝒄 (𝒚 → 𝒔) at 𝒚 = 𝒔
and the differential kernel 𝜕𝒏(𝒔)𝑃𝐵𝒄 (𝒔 → 𝒛) at 𝒛 = 𝒔.

To address this problem, we introduce control variates to Eq. (25),
yielding:

𝜕𝒏(𝒔)𝑢 =

∫
𝐵𝒄

(𝑓 (𝒚) − 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒚 → 𝒔) d𝒚 + 𝑓 (𝒔) 𝑅
𝑛︸ ︷︷ ︸

interior

+

∫
𝜕𝐵𝒄

(𝑢 (𝒛) − 𝑔(𝒔)) 𝜕𝒏(𝒔)𝑃𝐵𝒄 (𝒔 → 𝒛) d𝒛︸ ︷︷ ︸
boundary

,

(26)

where 𝑅 = ∥𝒄 − 𝒔∥ is the radius of the ball 𝐵𝒄 , and 𝑛 denotes
the dimensionality of the domain. Compared to Eq. (25), Eq. (26)
has the advantage that the integrands of its interior and boundary
components converge at 𝒚 → 𝒔 and 𝒛 → 𝒔, respectively. We show
a derivation of this result (as well as a proof of the convergence) in
§2.2 and §2.3 of the supplemental document.

We estimate Eq. (26) using Monte Carlo integration, as summa-
rized in Algorithm 2. In practice, we draw 𝒚 and 𝒛 uniformly from
the ball 𝐵𝒄 and its surface 𝜕𝐵𝒄 , respectively. Further, we utilize
antithetic sampling for the boundary component by accompanying
each sampled 𝒛 an antithesis 𝒛∗ obtained by mirroring 𝒛 around the
line connecting 𝒔 and 𝒄 . Precisely,

𝒛∗ = 𝒔 + 2 (𝒏(𝒔) · Δ𝒛) 𝒏(𝒔) − Δ𝒛, (27)

Figure 3: We search for the largest ball—which is 𝐵𝒄𝑘 in this
example—inside the domain �̂� with the center located along
the ray (𝒔, 𝒏(𝒔)). To this end, we use bisection to find the
maximal radius 𝑡 of the ball based on Eq. (28).

ALGORITHM 2: Estimating the normal derivative 𝜕𝒏(𝒔)𝑢 at a
boundary point 𝒔

1 EstNormalDerivative(𝒔; �̂�, 𝜖0)
2 begin
3 Find 𝒄 ∈ �̂� such that the ball 𝐵𝒄 is tangent to 𝜕�̂� at 𝒔;
4 𝜕𝒏(𝒔)𝑢 = 0;

/* Estimating the interior component */

5 Draw 𝒚 from 𝐵𝒄 with the probability 𝑝 (𝒚) ;
6 𝜕𝒏(𝒔)𝑢 +=

[
(𝑓 (𝒚) − 𝑓 (𝒔)) 𝑃𝐵𝒄 (𝒚 → 𝒔)

]
/𝑝 (𝒚) + 𝑓 (𝒔) 𝑅/𝑛;

/* Estimating the boundary component */

7 Draw 𝒛 from 𝜕𝐵𝒄 with the probability 𝑝 (𝒛) ;
8 if ∥𝒛 − 𝒔 ∥ > 𝜖0 then
9 Compute the antithetic sample 𝒛∗;

10 Estimate 𝑢𝒛 = 𝑢 (𝒛) , 𝑢𝒛∗ = 𝑢 (𝒛∗) using WoS ; // Eq. (6)
11 𝜕𝒏(𝒔)𝑢 +=

[
((𝑢𝒛+𝑢𝒛∗)/2 −𝑔 (𝒔)) 𝜕𝒏(𝒔)𝑃𝐵𝒄 (𝒔 → 𝒛)

]
/𝑝 (𝒛) ;

12 end
13 return 𝜕𝒏(𝒔)𝑢;
14 end

where Δ𝒛 := 𝒛 − 𝒔. To avoid numerical issues, we discard samples
of 𝒛 that are too close to 𝒔 (i.e., when ∥𝒛 − 𝒔∥ < 𝜖0 for some small
𝜖0).

Lastly, as we will demonstrate in §6, making the ball 𝐵𝒄 (that
is tangent to the boundary 𝜕�̂� at 𝒔) larger usually leads to lower
variance. To this end, we seek a large 𝑡 > 0 such that the ball
centered at 𝒄 = 𝒔 + 𝑡 𝒏(𝒔) with radius 𝑡 is fully contained in the
domain �̂� and its boundary 𝜕�̂�. It is easy to verify that this holds
if and only if

𝑟 �̂� (𝒔 + 𝑡 𝒏(𝒔)) = 𝑡, (28)

with 𝑟 �̂� (𝒑) denoting the minimal distance from 𝒑 to the bound-
ary 𝜕�̂� for any 𝒑 ∈ �̂�. On the other hand, if the ball goes beyond
�̂� ∪ 𝜕�̂�, one would have 𝑟 �̂� (𝒔 + 𝑡 𝒏(𝒔)) < 𝑡 instead.

In practice, based on the relation in Eq. (28), we search for the
greatest 𝑡 using bisection (see Figure 3).

Discussion. Previous methods [Sawhney and Crane 2020; Miller
et al. 2023] estimate normal derivatives at boundary points based

A Differential Monte Carlo Solver For the Poisson Equation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

on the following relation:

∇𝑢 (𝒙) =
∫
𝐵𝒙

𝑓 (𝒚) 𝜕

𝜕𝒙
𝐺 (𝒙 ↔ 𝒚) d𝒚︸ ︷︷ ︸

interior

+ 1
|𝐵𝒙 |

∫
𝜕𝐵𝒙

𝑢 (𝒛) 𝒛 − 𝒙
𝑅

d𝒛︸ ︷︷ ︸
boundary

,

(29)
where 𝑅 denotes the radius of the ball 𝐵𝒙 . Specifically, the normal
derivative 𝜕𝒏(𝒔)𝑢 is computed approximately via

𝜕𝒏(𝒔)𝑢 = 𝒏(𝒔) · ∇𝑢 (𝒔) ≈ 𝒏(𝒔) · ∇𝑢 (𝒔𝑙), (30)

where 𝒔𝑙 := 𝒔 + 𝑙 𝒏(𝒔) is a point in the interior of the domain 𝛀

(for some small 𝑙 > 0), and ∇𝑢 (𝒔𝑙) is estimated by applying Monte
Carlo integration to Eq. (29) (by letting 𝒙 = 𝒔𝑙 and having 𝑢 (𝒛) on
the right-hand side computed using walk-on-spheres).

Wewill demonstrate in §6 that, comparedwith previousmethods,
our estimator described in Eq. (26) and Algorithm 2 can produce
significantly lower variance.

6 RESULTS
We implement our estimator expressed in §5 on the GPU with
Dr.Jit [Jakob et al. 2022] as the numerical backend.

6.1 Normal-Derivative Estimator
We first evaluate the effectiveness of our normal-derivative estima-
tor outlined in Algorithm 2.

Baseline method. For this evaluation, we use the approach given
by Eqs. (29) and (30) as the baseline. As suggested by Sawhney
and Crane [2020], this baseline method leverages moving control
variates and antithetic sampling.We note that, although our normal-
derivative estimator also uses control variates and antithetic sam-
pling, they are applied very differently.

Ablation. We present an ablation study in Figure 4 that compares
the performance of four normal-derivative estimators including the
baseline method described above (indicated as “baseline”), our full
method (indicated as “ours”), our method but without performing
antithetic sampling of 𝒛 (indicated as “ours (no anti.)”), and our
method using a smaller ball 𝐵𝒄 whose radius equals 20% of the
maximum (indicated as “ours (small ball)”).

In this ablation, we apply all four methods to a 2D Laplace prob-
lem over a disc (1a–1c) and a 2D Poisson problem over a clover
shape (2a–2c). For both problems, we estimate normal derivatives
at a single evaluation point using high sample counts (i.e., 2000 and
100000, respectively). We show the cumulative average of sample
contributions in (b), and the variance of all samples in (c).

For the first problem, our full method enjoys near-zero variance
by using the ball 𝐵𝒄 that equals the entire domain �̂�. Even by using
a small ball, our method outperforms the baseline method by having
less than a third of the variance.

The second problem has a concave domain, yielding a smaller
ball 𝐵𝒄 at the evaluation point. Still, all variants of our method
outperform the baseline with the full version being the clear winner.

6.2 Full Estimator
We now evaluate our full WoS estimator presented in §5.

Baseline method. As discussed in §4, a naïve way to formulate
the derivative 𝜕𝑢 is to differentiate the integral equation (5) using
Reynolds transport theorem [1903]. When the domain 𝛀 depends
on the parameter 𝜃 , so will the ball 𝐵𝒙 (and its boundary 𝜕𝐵𝒙),
causing the derivative of the interior component of Eq. (5) to involve
a boundary integral capturing the rate at which the ball grows or
shrinks with respect to 𝜃 .

To demonstrate the advantage of our formulation introduced in
§4, we implement an additional estimator using this naïve formula-
tion as a baseline.

Validation and evaluation. In Figure 5, we evaluate our tech-
nique by comparing derivatives (with respect to translations of
the boundaries) estimated by our estimator to those obtained with
finite differences (FD) and the baseline method. The first two exam-
ples (“Wrench” and “Teapot”) use 2D Laplace problems (i.e., with
zero source), while the third example (“Globe”) uses a 2D Poisson
problem with an analytical source formulated by a 2D sinusoidal
wave. The last example (“Bunny”) uses a 3D Laplace problem. For all
four examples, our results closely match the FD references and are
significantly cleaner than the results generated with the baseline
method in equal time.

Solving inverse problems. Lastly, in Figures 6–8, we solve inverse
Poisson problems using gradients generated with our method and
the baseline. Specifically, we infer parameters related to the shape
of the domain 𝛀 by minimizing the difference between the tar-
get and the simulated solution 𝑢 (observed at all or part of the
domain). We use the Adam algorithm [Kingma and Ba 2014] with
identical configurations (e.g., initialization and learning rate) for
the optimizations.

Figure 6 includes two examples (“Wrench” and “Globe”) that use,
respectively, inverse 2D Laplace and Poisson problems. For each
example, we search for the rotation angle of the domain boundary
based on the solution 𝑢 (sampled as an image).

Figure 7 contains a “Bunny” example that uses an inverse (ex-
terior) Laplace problem in 3D with a bunny-shaped domain. We
optimize the pose of the bunny based on solution values sampled
over the surface of a cube surrounding the domain.

Figure 8 shows a “Diffusion curve” example that involves an
inverse Laplace problem in 2D where the shape of the domain
boundary (expressed using a polyline) is freely optimized based on
the solution 𝑢 sampled as an image.

In all cases, our estimator allows the optimizations to converge
to the ground truth smoothly, while the baseline method fails due
to high variance.

7 DISCUSSION AND CONCLUSION
Limitations and future work. When performing forward solve,

our implementation uses the “vanilla” walk-on-spheres (WoS)method
by Sawhney and Crane [2020]. Incorporating more advanced vari-
ants (e.g., [Qi et al. 2022; Miller et al. 2023]) or walk-on-boundary
(WoB) methods [Sugimoto et al. 2023] into our pipeline may further
improve its efficiency.

Also, when estimating normal derivatives using Eq. (26), we
sample both the interior and the boundary integrals uniformly.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Yu, Wu, Zhou, and Zhao

Devising better sampling techniques for these integrals can be
beneficial.

Lastly, our technique focuses on Poisson equations with Dirichlet
boundary conditions. Generalizing our method to support a wider
range of PDEs (e.g., screened Poisson) and other (e.g., Neumann)
boundary conditions is an important topic for future research.

Conclusion. We introduced a theory that differentiates solutions
to the Poisson equation with Dirichlet boundary conditions. Specif-
ically, we devised a new formulation that expresses the derivatives
as boundary integrals and offers the generality of differentiating
with respect to arbitrary parameters including domain shapes.

Based on this formulation, we developed aMonte Carlo estimator
based on the grid-free walk-on-spheres (WoS) process. At the core
of our technique is a new method that estimates normal derivatives
of the solution (at domain boundaries) by leveraging a new form of
control variates and antithetic sampling.

Compared with prior methods, our WoS estimator is capable of
providing derivative estimates with significantly lower variances—
which we demonstrated via several differentiable and inverse PDE
problems.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive sugges-
tions. We are also grateful to Aaron Lefohn for his support. This
work started when Zihan Yuwas an intern at NVIDIA. Zihan Yu and
Zhiqian Zhou’s contributions while at the University of California,
Irvine were partially supported by NSF grant 1900927.

REFERENCES
Ilia Binder and Mark Braverman. 2012. The rate of convergence of the walk on spheres

algorithm. Geometric and Functional Analysis 22, 3 (2012), 558–587.
J.M Delaurentis and L.A Romero. 1990. A Monte Carlo method for Poisson’s equation.

J. Comput. Phys. 90, 1 (1990), 123–140.
Michel Delfour and Jean-Paul Zolsio. 2010. Shapes and Geometries: Metrics, Anal-

ysis, Differential Calculus, and Optimization. Society for Industrial and Applied
Mathematics.

L.C. Evans. 2010. Partial Differential Equations. American Mathematical Society.
Jaroslav Haslinger and Raino AE Mäkinen. 2003. Introduction to shape optimization:

theory, approximation, and computation. SIAM.
Dan Henry. 2005. Perturbation of the boundary in boundary-value problems of partial

differential equations. Number 318. Cambridge University Press.
Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. DR.JIT: a

just-in-time compiler for differentiable rendering. ACM Trans. Graph. 41, 4 (2022),
124:1–124:19.

Shizuo Kakutani. 1944. 143. Two-dimensional Brownian Motion and Harmonic Func-
tions. Proceedings of the Imperial Academy 20, 10 (1944), 706–714.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4 (2023), 82:1–82:11.

Mervin E. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet
Problem. The Annals of Mathematical Statistics 27, 3 (1956), 569 – 589.

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,
and David Salesin. 2008. Diffusion curves: a vector representation for smooth-
shaded images. ACM Trans. Graph. 27, 3 (2008), 1–8.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. Computer Graphics Forum 41, 4 (2022), 51–62.

O. Reynolds. 1903. Papers on mechanical and physical subjects: the sub-mechanics of the
universe. Vol. 3. The University Press.

Karl Karlovich Sabelfeld. 1982. Vector algorithms in the Monte-Carlo method for
solving systems of second-order elliptic equations and Lame’s equation. In Doklady
Akademii Nauk, Vol. 262. Russian Academy of Sciences, 1076–1080.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: a grid-
free approach to PDE-based methods on volumetric domains. ACM Trans. Graph.
39, 4 (2020), 123:1–123:18.

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk
on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary
Conditions. ACM Trans. Graph. 42, 4 (2023), 80:1–80:20.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free
Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Trans. Graph. 41,
4 (2022), 53:1–53:17.

Jan Sokolowski and Jean-Paul Zolésio. 1992. Introduction to shape optimization.
Springer.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.
2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM
Trans. Graph. 42, 4 (2023), 81:1–81:16.

Shawn Walker. 2015. The Shapes of Things: A Practical Guide to Differential Geometry
and the Shape Derivative. Society for Industrial and Applied Mathematics.

Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving inverse PDE
problems using grid-free Monte Carlo estimators. https://arxiv.org/abs/2208.02114

Shuang Zhao, Frédo Durand, and Changxi Zheng. 2018. Inverse Diffusion Curves Using
Shape Optimization. IEEE Transactions on Visualization and Computer Graphics 24,
7 (2018), 2153–2166.

https://arxiv.org/abs/2208.02114

A Differential Monte Carlo Solver For the Poisson Equation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

(a) Forward (b) Normal derivative (c) Variance
Evaluation point

0 500 1000 1500 2000

−4

−2

0

2
baseline
ours (no anti.)
ours (small ball)
ours
ground truth

ba
se

lin
e

ou
rs

(no
 an

ti.)

ou
rs

(sm
all

 ba
ll)

ou
rs

0

1

2
1e3

Evaluation point 0 20000 40000 60000 80000 100000

−5.50

−5.25

−5.00

−4.75

−4.50

−4.25

baseline
ours (no anti.)
ours (small ball)
ours
ground truth ba

se
lin

e

ou
rs

(no
 an

ti.)

ou
rs

(sm
all

 ba
ll)

ou
rs

0

1

2

3
1e3

Figure 4: Ablation: We compare the performance of four normal-derivative estimators: the baseline method by Sawhney and
Crane [2020], ours without antithetic sampling, ours using a small ball 𝐵𝒄 , and our full method. We apply all four estimators
to a Laplace problem over a disc (top) and a Poisson problem over a clover (bottom). For both problems, we estimate normal
derivative at one evaluation point.

(a
)F

or
w
ar
d

Wrench (2D) Teapot (2D) Globe (2D) Bunny (3D)
(b) Finite difference (c) Ours (equal time) (d) Baseline (equal time) (b) Finite difference (c) Ours (equal time) (d) Baseline (equal time)

Figure 5: Differentiable PDE solve results: (a) Solutions to Poisson equations with Dirichlet boundary conditions (i.e., forward
solve results); (b) Derivatives computed using finite differences (FD); (c, d) Derivatives estimated in equal time using our
technique and the baseline estimator (described in §6.2). All images in this figure use the same color map as Figure 1.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Yu, Wu, Zhou, and Zhao

(a) Initial (b) Target (c) Opt (ours) (d) Opt (baseline) (e) Loss (f) Param. error

0 50 100

2

3

4

5
1e2

Ours
Baseline

0 50 100

2

4

1e−1

Ours
Baseline

Wrench

0 50 100

1.0

1.5

2.0

1e4

Ours
Baseline

0 50 100

1

2

3

Ours
Baseline

Globe

Figure 6: Solving 2D inverse problems: For both examples, we optimize the rotation angle of the domain boundary based on the
solution field 𝑢 near the boundary (both interior and exterior). All images in this example use the same color map as Figure 1.
The parameter error in (f) is used only for evaluation (and not for optimization).

(a) Initial (b) Target (c) Opt (ours) (d) Opt (baseline) (e) Loss (f) Param. error

0 50 100
3.0

3.5

4.0

4.5

5.0
1e3

Ours
Baseline

0 50 1000.0

0.2

0.4

0.6

0.8

Ours
Baseline

Bunny

Figure 7: Solving 3D inverse problem: In this example, we infer the pose of a 3D bunny (with fixed Dirichlet boundary conditions
over the surface) based on the solution 𝑢 sampled on the surface of a cube surrounding the bunny. All images in the top row
use the same color map as Figure 1. The parameter error in (f) is used only for evaluation (and not for optimization).

(a) Initial (b) Target (c) Opt (ours) (d) Opt (baseline) (e) Loss (f) Shape error

0 100 200

4

6

1e4

Ours
Baseline

0 100 200

0.5

1.0

1e−1

Ours
Baseline

Diffusion curve

Figure 8: Solving 2D shape-optimization problem: In this example, we optimize the shape of the domain boundary (expressed
as per-vertex positions) based on the colored (i.e., RGB) solution field 𝑢 around the boundary. The shape error in (f) is used only
for evaluation (and not for optimization).

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Boundary-Integral Formulation
	4.1 Material-Form Parameterization
	4.2 Our Derivation

	5 Differential Walk-On-Spheres
	5.1 Sampling Boundary Point
	5.2 Estimating Gradient At Domain Boundary

	6 Results
	6.1 Normal-Derivative Estimator
	6.2 Full Estimator

	7 Discussion and Conclusion
	Acknowledgments
	References

