
Image-space Adaptive Sampling for Fast Inverse Rendering
KAI YAN, University of California Irvine, USA
CHENG ZHANG, Reality Labs, Meta, USA
SÉBASTIEN SPEIERER, Reality Labs, Meta, Switzerland
GUANGYAN CAI, University of California Irvine, USA
YUFENG ZHU and ZHAO DONG, Reality Labs, Meta, USA
SHUANG ZHAO, University of California Irvine, USA

(a) Initial (b) Target (c) Ours (d) Uniform

Fig. 1. We introduce an image-space adaptive sampling technique as a form of pixel-level mini-batching for inverse rendering (that only renders a subset of
pixels per iteration). Our method is loss- and variance-aware, enabling fast inverse rendering with low per-iteration computation budget. In this example, we
jointly optimize the surface albedo of three Catcake objects. At equal time, our technique outperforms uniform mini-batching by allowing faster convergence.
Inverse rendering animations generated using our technique and uniform mini-batching can be found in the supplemental material.

Inverse rendering is crucial for many scientific and engineering disciplines.

Recent progress in differentiable rendering has led to efficient differentia-

tion of the full image formation process with respect to scene parameters,

enabling gradient-based optimization.

However, computational demands pose a significant challenge for differ-

entiable rendering, particularly when rendering all pixels during inverse

rendering from high-resolution/multi-view images. This computational cost

leads to slow performance in each iteration of inverse rendering. Meanwhile,

naively reducing the sampling budget by uniformly sampling pixels to ren-

der in each iteration can result in high gradient variance during inverse

rendering, ultimately degrading overall performance.

Authors’ addresses: Kai Yan, University of California Irvine, USA, kyan8@uci.edu;

Cheng Zhang, Reality Labs, Meta, USA; Sébastien Speierer, Reality Labs, Meta, Zürich,

Switzerland; Guangyan Cai, University of California Irvine, USA; Yufeng Zhu; Zhao

Dong, Reality Labs, Meta, USA; Shuang Zhao, University of California Irvine, USA,

shz@ics.uci.edu.

Please use nonacm option or ACM Engage class to enable CC licenses

This work is licensed under a Creative Commons Attribution 4.0 International License.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1540-2/2025/08

https://doi.org/10.1145/3721238.3730627

Our goal is to accelerate inverse rendering by reducing the sampling

budget without sacrificing overall performance. In this paper, we introduce

a novel image-space adaptive sampling framework to accelerate inverse

rendering by dynamically adjusting pixel sampling probabilities based on

gradient variance and contribution to the loss function. Our approach ef-

ficiently handles high-resolution images and complex scenes, with faster

convergence and improved performance compared to uniform sampling,

making it a robust solution for efficient inverse rendering.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: Inverse rendering, differentiable render-

ing, gradient-based optimization

ACM Reference Format:
Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu,

Zhao Dong, and Shuang Zhao. 2025. Image-space Adaptive Sampling for

Fast Inverse Rendering. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers (SIGGRAPH Conference
Papers ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3721238.3730627

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

HTTPS://ORCID.ORG/0000-0001-8142-8380
HTTPS://ORCID.ORG/0000-0002-6298-9833
HTTPS://ORCID.ORG/0000-0001-6919-7567
HTTPS://ORCID.ORG/0000-0003-3293-4732
HTTPS://ORCID.ORG/0009-0003-8716-201X
HTTPS://ORCID.ORG/0000-0002-9026-6886
HTTPS://ORCID.ORG/0000-0003-4759-0514
https://orcid.org/0000-0001-8142-8380
https://orcid.org/0000-0002-6298-9833
https://orcid.org/0000-0001-6919-7567
https://orcid.org/0000-0003-3293-4732
https://orcid.org/0009-0003-8716-201X
https://orcid.org/0000-0002-9026-6886
https://orcid.org/0000-0002-9026-6886
https://orcid.org/0000-0003-4759-0514
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721238.3730627
https://doi.org/10.1145/3721238.3730627

2 • Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu, Zhao Dong, and Shuang Zhao

1 INTRODUCTION
Physics-based forward rendering concerns synthesizing physically

accurate images of 3D scenes. Decades of research efforts on this

topic have led to forward rendering techniques capable of efficiently

reproducing complex light transport effects including environmen-

tal lighting, soft shadows, and interreflection.

On the contrary, inverse rendering takes input images of a scene

and aims to estimate scene parameters, including material prop-

erties and object geometries. A widely adopted solution known

as analysis by synthesis formulates inverse rendering as an opti-

mization problem that seeks scene parameters that minimize the

difference (quantified by some loss) between input images and ren-

derings of the scene. Recent advances in differentiable rendering [Li

et al. 2018; Zhang et al. 2020; Bangaru et al. 2020] have enabled the

evaluation of forward-rendering derivatives with respect to scene

parameters, allowing inverse-rendering optimizations to be solved

using gradient-based methods such as stochastic gradient descent

(SGD) and Adam [Kingma and Ba 2014].

Many, if not most, practical inverse-rendering configurations use

many (e.g., multi-view) input images. Unfortunately, rendering all

the corresponding images for every iteration of the optimization

process can be prohibitively expensive in terms of both compute

time and VRAM consumption. To address this problem, pixel-level

mini-batching is a widely adopted approach in inverse-rendering

pipelines [Mildenhall et al. 2020; Yariv et al. 2020; Müller et al. 2022;

Nimier-David et al. 2022]: at each iteration, the loss is estimated

using only a randomly selected subset of images or pixels.

However, the efficient selection of pixels for mini-batching has

received limited attention. Most existing inverse-rendering pipelines

simply adopt uniform sampling when selecting images or pixels.

Although this simple strategy is unbiased and works adequately in

many cases, as we will demonstrate later in this paper, doing so can

lead to highly noisy estimates of loss gradients that significantly

reduce the convergence rate of inverse-rendering optimizations.

In this paper, we introduce a technique that performs adaptive

pixel sampling for inverse rendering. Given a per-iteration sam-

pling budget, our technique allocates samples on each pixel based

on not only its contribution to the loss function but also the for-

ward/differentiable rendering variance. By offering efficient and

low-variance gradient estimates, our method enables fast inverse

rendering using small batch sizes without changing the underlying

primal/differentiable rendering procedures.

Technically, our paper makes the following contributions.

• We introduce a technique that adaptively samples pixels to mini-

mize the variance of loss gradient estimates (§3).

• We discuss how the pixel sampling technique can be efficiently

implemented and integrated into complete inverse-rendering

pipelines (§4).

We demonstrate in §5 the effectiveness of our technique using sev-

eral synthetic inverse-rendering examples, including SVBRDF re-

construction, shape optimization, and inverse volume rendering.

2 RELATED WORK
Adaptive sampling for rendering. Adaptive sampling has been ex-

tensively explored to improve the quality of Monte Carlo rendering

in traditional rendering by allocating samples strategically rather

than randomly. This area has been the focus of numerous previous

works [Ramamoorthi et al. 2007; Overbeck et al. 2009; Rousselle

et al. 2012; Zwicker et al. 2015; Hasselgren et al. 2020; Salehi et al.

2022; Firmino et al. 2023]. However, these works primarily focus on

enhancing the quality of forward rendering. In contrast, we aim to

utilize image-space adaptive sampling to improve the performance

of inverse rendering.

Variance-aware forward rendering. Variance reduction is a long-

standing topic in Monte Carlo forward rendering. Recent methods

leverage variance-aware method to enhance various aspects in-

cluding multiple importance sampling [Grittmann et al. 2019] and

path guiding [Rath et al. 2020]. Our technique, a variance-aware

method for enhancing inverse rendering, is largely orthogonal to

these methods.

Differentiable rendering. Physics-based differentiable rendering
has made significant progress in recent years, enabling gradient-

based optimization in realistic scenes. A primary challenge in the

development of general-purpose differentiable rendering techniques

has been differentiating with respect to scene geometry, which typi-

cally requires calculating additional boundary integrals. To address

this, multiple methods [Li et al. 2018; Zhang et al. 2020; Yan et al.

2022; Zhang et al. 2023; Xu et al. 2023] have been developed to

directly sample discontinuity boundaries. Another class of methods

utilize reparameterizes boundary integrals to avoid explicit handling

of discontinuity boundaries altogether [Loubet et al. 2019; Bangaru

et al. 2020]. These techniques simplify the differentiation process

while maintaining accuracy in gradient computation. Our technique

is orthogonal to these methods and can benefit inverse-rendering

optimizations using the latter class.

Path sampling methods for differentiable rendering also have

been crucial recently. Several approaches have been proposed to

allow differentiable rendering scaling out to complex scenes with

large numbers of parameters [Nimier-David et al. 2020; Vicini et al.

2021]. [Zhang et al. 2021; Su and Gkioulekas 2024; Belhe et al. 2024]

propose differential and antithetic BRDF sampling methods for esti-

mating BRDF parameter derivatives.

Variance-aware differentiable rendering was recently introduced

in [Yan et al. 2024]. This technique enables differentiating not only

the rendered image with respect to scene parameters but also its

variance with respect to sampling probabilities. Our technique is

orthogonal to this work, focusing on the estimation of the variance
of derivatives for adaptive sampling rather than the derivative of
variance.

Inverse rendering. Inverse rendering aims to estimate the physical

attributes of a scene, such as material, geometry, lighting, and vol-

ume, from image(s). These pipelines recover scene parameters by

minimizing a loss function, often leveraging a large batch of input

photos for reconstruction. Neural-based methods [Mildenhall et al.

2020; Wang et al. 2021; Zhang et al. 2022; Kerbl et al. 2023] have

gained popularity in recent years. In addition, recent advances in

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

Image-space Adaptive Sampling for Fast Inverse Rendering • 3

differentiable rendering have driven the development of physics-

based inverse rendering pipelines, as demonstrated by [Munkberg

et al. 2022; Cai et al. 2022; Hasselgren et al. 2022; Sun et al. 2023;

Yan et al. 2023]. However, these advances present a challenge: when

processing high-resolution images or large image sets, small batch

sizes can result in significant variance in gradient estimates.

Our key insight is that computing every pixel during inverse

rendering is unnecessary; by strategically allocating samples, we can

effectively reduce rendering costs and enhance overall performance.

3 IMAGE-SPACE ADAPTIVE SAMPLING
Consider a typical inverse rendering problem where a scene is con-

trolled by some parameter 𝜽 ∈ R𝑚𝜽
and 𝑰 (𝜽) ∈ R𝑚𝑰

be rendering(s)

of the scene comprising 𝑚𝑰 pixels 𝐼1 (𝜽), . . . , 𝐼𝑚𝑰 (𝜽). The inverse
rendering problem then aims at finding the optimal parameter 𝜽 ∗

minimizing some (differentiable) loss L(𝑰 ; 𝑰 target) that measures

the difference between the rendering 𝑰 and some fixed target 𝑰 target
:

𝜽 ∗ = arg min

𝜽
L

(
𝑰 (𝜽); 𝑰 target

)
. (1)

In practice, the inverse-rendering optimization (1) is usually solved

using gradient-based methods. To this end, a key ingredient is the

derivative dL/d𝜽 of the loss L with respect to the parameter 𝜽 .
According to the chain rule, it holds that

dL
d𝜽

=
𝜕L
𝜕𝑰︸︷︷︸

=: 𝜕𝑰 L

d𝑰

d𝜽
. (2)

Let (𝜕𝑰L) 𝑗 ∈ R denote the 𝑗-th component of 𝜕𝑰L. Then, Eq. (2)

can be rewritten as

dL
d𝜽

=

𝑚𝑰∑︁
𝑗=1

(𝜕𝑰L) 𝑗
d𝐼 𝑗

d𝜽
. (3)

Since estimating the derivative d𝐼 𝑗/d𝜽 requires differentiable ren-
dering, directly computing the sum over all pixels in Eq. (3) is com-

putationally intensive. Replacing the sum with a Monte Carlo esti-

mation (i.e., via mini-batching) can reduce this burden significantly.

Problem specification. We consider the following single-sample

estimator ⟨dL/d𝜽⟩ of the loss gradient dL/d𝜽 :〈
dL
d𝜽

〉
=

⟨(𝜕𝑰L) 𝑗 ⟩
𝑝 𝑗

〈
d𝐼 𝑗

d𝜽

〉
, (4)

where:

• the pixel index 𝑗 is drawn randomly from {1, 2, . . . ,𝑚𝑰 } with the

probability mass 𝑝 𝑗 ;

• ⟨(𝜕𝑰L) 𝑗 ⟩ and ⟨d𝐼 𝑗/d𝜽⟩ denote, respectively, Monte Carlo estima-

tors of (𝜕𝑰L) 𝑗 and d𝐼 𝑗/d𝜽 that we assume are given, independent,
and unbiased.

The objective of this section is to derive the probabilities masses

(𝑝 𝑗 : 𝑗 = 1, 2, . . . ,𝑚𝑰) that minimize the variance of the estimator

⟨dL/d𝜽⟩ given by Eq. (4). In what follows, we revisit the existing

solutions before introducing our technique in §3.1 and §3.2.

Previous methods. Conventional inverse-rendering methods have

relied mostly on uniform batching that sets 𝑝 𝑗 ≡ 1/𝑚𝑰 for all 𝑗 .

Recently, Su and Gkioulekas [2024] have proposed to set

𝑝 𝑗 ∝ |(𝜕𝑰L) 𝑗 |. (5)

Unfortunately, as we will demonstrate in §5, both uniform sam-

pling and Eq. (5) can cause the gradient estimate ⟨dL/d𝜽⟩ in Eq. (4)

to suffer from high variance when the estimators ⟨(𝜕𝑰L) 𝑗 ⟩ and
⟨d𝐼 𝑗/d𝜽⟩ have greatly varying means and/or variances for different

pixels 𝑗 .

3.1 Scalar Case
To derive our technique, we first consider a simple case when the

scene parameter 𝜃 is a scalar (i.e.,𝑚𝜽 = 1). We aim to minimize the

variance of the estimator ⟨dL/d𝜽⟩ expressed in Eq. (4). Since

V
[〈

dL
d𝜽

〉]
= E

[〈
dL
d𝜽

〉
2

]
− E2

[〈
dL
d𝜽

〉]
, (6)

and E[⟨dL/d𝜽⟩] = dL/d𝜽 is constant (as long as the estimator is unbi-

ased), minimizing the variance V[⟨dL/d𝜽⟩] amounts to minimizing

the second moment E[⟨dL/d𝜽⟩2].
We recall that the estimators ⟨(𝜕𝑰L) 𝑗 ⟩ and ⟨d𝐼 𝑗/d𝜽⟩ are assumed

to be unbiased and independent. It follows that

E

[〈
dL
d𝜽

〉
2

]
=

𝑚𝑰∑︁
𝑗=1

1

𝑝 𝑗
E
[
⟨(𝜕𝑰L) 𝑗 ⟩2

]
E

[〈
d𝐼 𝑗

d𝜽

〉
2

]
. (7)

It can be shown using Lagrange multiplier (see the textbook by Boyd

and Vandenberghe [2004, §5.1.1]) that Eq. (7) has a global minimizer

𝑝 𝑗 ∝
√︁
𝑝 𝑗1 𝑝 𝑗2, where

𝑝 𝑗1 := E[⟨(𝜕𝑰L) 𝑗 ⟩2],
𝑝 𝑗2 := E[⟨d𝐼 𝑗/d𝜽⟩2],

(8)

for 𝑗 = 1, 2, . . . ,𝑚𝑰 .

Discussion. Eq. (8) is a generalization of sampling densities used

by previous inverse-renderingmethods. Specifically, assuming ⟨(𝜕𝑰L) 𝑗 ⟩
to have zero variance (i.e., (𝜕𝑰L) 𝑗 is known), it holds thatE[⟨(𝜕𝑰L) 𝑗 ⟩2] ≡
(𝜕𝑰L 𝑗)2

, and Eq. (8) becomes

𝑝 𝑗 ∝ |(𝜕𝑰L) 𝑗 |

√√√
E

[〈
d𝐼 𝑗

d𝜽

〉
2

]
. (9)

This relation further reduces to Eq. (5) when the second moments

E[⟨d𝐼 𝑗/d𝜽⟩2] remain constant for all 𝑗 . However, these assumptions

rarely hold in practice, reducing the effectiveness of the simple

approach expressed in Eq. (5)—which we will demonstrate in §5.

3.2 General Case
We now consider the general case when the scene parameter 𝜽 :=

(𝜃1, 𝜃2, . . . , 𝜃𝑚𝜽) is a vector. In this case, for each pixel 𝑗 , the deriva-

tive d𝐼 𝑗/d𝜽 is also a vector with its 𝑘-th component being the partial

derivative 𝜕𝐼 𝑗/𝜕𝜃𝑘 .
In this case, we consider the problem of minimizing the sum of

per-parameter variances:

𝑚𝜽∑︁
𝑘=1

V
[〈

𝜕L
𝜕𝜃𝑘

〉]
, (10)

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

4 • Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu, Zhao Dong, and Shuang Zhao

which is essentially the trace of the covariance matrix of the (vector-

valued) estimate ⟨dL/d𝜽⟩.
Similar to the scalar case discussed in §3.1, minimizing Eq. (10)

boils down to minimizing the sum of per-parameter second mo-

ments:

𝑚𝜽∑︁
𝑘=1

E

[〈
𝜕L
𝜕𝜃𝑘

〉
2

]
=

𝑚𝑰∑︁
𝑗=1

E
[
⟨(𝜕𝑰L) 𝑗 ⟩2

]
𝑝 𝑗

𝑚𝜽∑︁
𝑘=1

E

[〈
𝜕𝐼 𝑗

𝜕𝜃𝑘

〉
2

]
, (11)

with the global minimizer

𝑝 𝑗 ∝
√︁
𝑝 𝑗1 𝑝 𝑗2, where

𝑝 𝑗1 := E[⟨(𝜕𝑰L) 𝑗 ⟩2],

𝑝 𝑗2 :=

𝑚𝜽∑︁
𝑘=1

E

[〈
𝜕𝐼 𝑗

𝜕𝜃𝑘

〉
2

]
.

(12)

Monte Carlo estimation. We compute the sampling probability 𝑝 𝑗
given by Eq. (12) using a Monte Carlo process.

Specifically, to evaluate the first component 𝑝 𝑗1, we first obtain

the primal renderings 𝑰 and compute the loss L and the derivative

𝜕𝑰L using automatic differentiation. Then, we obtain 𝑝 𝑗1 by taking

the 𝑗-th element of component-wise squared 𝜕𝑰L.

We now focus on estimating the remaining component 𝑝 𝑗2 given

by the sum of second moments E[⟨𝜕𝐼 𝑗/𝜕𝜃𝑘⟩2]. Let 𝑓𝑗 denote the

measurement contribution function for pixel 𝑗 . We assume that the

provided differential estimators ⟨𝜕𝐼 𝑗/𝜕𝜃𝑘⟩ (for all 𝑘 = 1, 2, . . . ,𝑚𝜽)

share the same path sampling strategy. Precisely,〈
𝜕𝐼 𝑗

𝜕𝜃𝑘

〉
=

1

pdf 𝑗 (𝒙̄)
𝜕𝑓𝑗 (𝒙̄ ;𝜽)

𝜕𝜃𝑘
, (13)

where the light path 𝒙̄ is drawn randomly with the probability

density pdf 𝑗 . We omit the potential dependency of pdf 𝑗 on the

scene parameter 𝜽 for brevity.

Then, as demonstrated recently by Yan et al. [2024], the second

moment E[⟨𝜕𝐼 𝑗/𝜕𝜃𝑘⟩2] can be expressed as a path integral

E

[〈
𝜕𝐼 𝑗

𝜕𝜃𝑘

〉
2

]
=

∫
𝛀

1

pdf 𝑗 (𝒙̄)

(
𝜕𝑓𝑗 (𝒙̄ ;𝜽)

𝜕𝜃𝑘

)
2

d𝜇 (𝒙̄), (14)

where𝛀 denotes the path space with the Lebesguemeasure 𝜇. There-

fore,

𝑝 𝑗2 = E

[
𝑚𝜽∑︁
𝑘=1

〈
𝜕𝐼 𝑗

𝜕𝜃𝑘

〉
2

]
=

∫
𝛀

1

pdf 𝑗 (𝒙̄)

𝑚𝜽∑︁
𝑘=1

(
𝜕𝑓𝑗 (𝒙̄ ;𝜽)

𝜕𝜃𝑘

)
2

d𝜇 (𝒙̄),

(15)

which we estimate using the estimator

⟨𝑝 𝑗2⟩ =
1

pdf
2

𝑗 (𝑿̄)

𝑚𝜽∑︁
𝑘=1

(
𝜕𝑓𝑗 (𝑿̄ ;𝜽)

𝜕𝜃𝑘

)2

, (16)

where 𝑿̄ is a light path sampled with the probability density pdf 𝑗 .

We will discuss the efficient computation of Eq. (16) in §4.3.

Discussion. Computing the probabilities 𝑝 𝑗 in Eq. (12) requires

performing primal and differentiable renderings of all pixels of

the images 𝑰 , defeating the purpose of mini-batching. Fortunately,

since these probabilities are only used for sampling pixels, we can

compute them in an approximated fashion without sacrificing the

unbiasedness of the gradient estimate ⟨dL/d𝜽⟩. Wewill provide more

details on this in §4.1.

ALGORITHM 1: Estimating loss gradient dL/d𝜽 using our method

1 EstimateLossGradient()

/* Stage 1 */

2 if 𝑝 𝑗 needs to be updated then
3 Render I using low resolution and sample count;

4 Compute the loss L and gradient 𝜕𝑰 L using AD;

5 𝑝 𝑗1 = (𝜕𝑰 L) ∗∗ 2 ; // Component-wise square

6 Compute 𝑝 𝑗2 using our custom AD process ; // §4.3

7 Upsample and denoise 𝑝 𝑗1 and 𝑝 𝑗2;

8 𝑝 𝑗 = (𝑝 𝑗1 ∗ 𝑝 𝑗2) ∗∗ (1/2) ; // Component-wise operations

9 Normalize 𝑝 𝑗 ;

/* Stage 2 */

10 J = SamplePixelIndices(𝑝 𝑗) ;
11 𝜕𝜽 L = 0;
12 for each 𝑗 ∈ 𝐽 do
13 Estimate 𝐼 𝑗 using (forward) path tracing and compute (𝜕𝑰 L) 𝑗 ;
14 Sample a camera_ray through pixel 𝑗 ;

15 𝜕𝜽 L += PathReplay(camera_ray, 𝐼 𝑗 , (𝜕𝑰 L) 𝑗) ;
16 end
17 return 𝜕𝜽 L;

4 INVERSE RENDERING USING IMAGE-SPACE
ADAPTIVE SAMPLING

We now explain how our sampling scheme described in §3 can

be integrated to allow fast inverse rendering. Specifically, we will

detail how loss gradients dL/d𝜽 can be estimated using our adaptive

sampling in §4.1, introduce an optional step to better handle objects

with greatly varying levels of details in §4.2, and discuss efficient

automatic differentiation in §4.3.

4.1 Estimating Loss Gradients
In each iteration of an inverse-rendering optimization, we estimate

the loss gradient dL/d𝜽 in two stages, as outlined in Algorithm 1. In

the first stage, the pixel sampling probabilities (𝑝 𝑗 : 𝑗 = 1, 2, . . . ,𝑚𝑰)
are calculated (in an approximated fashion) based on Eq. (12).

In the second stage, we draw a set of pixel indices based on the

computed probabilities. For each drawn index 𝑗 , we first trace a

light paths through pixel 𝑗 to obtain an estimate ⟨(𝜕𝑰L) 𝑗 ⟩ of the
gradient 𝜕𝑰L 𝑗 . Then, we trace another path through this pixel to

obtain ⟨d𝐼 𝑗/d𝜽⟩. In the following, we provide more details for both

stages.

Stage 1. A challenge for this stage, as discussed at the end of §3.2,

is to compute the probabilities 𝑝 𝑗 efficiently since evaluating Eq. (12)

exactly requires performing differentiable rendering for all pixels,

defeating the purpose of adaptive sampling.

To address this problem, we make the key observation that, since

the probabilities 𝑝 𝑗 is only used for sampling pixel indices in Stage 2

(i.e., Line 10 of Algorithm 1), we can compute them approximatedly

without breaking unbiasedness (so long as 𝑝 𝑗 > 0 for all 𝑗).

In practice, we leverage upsampling and denoising to greatly re-

duce the computational overhead for computing 𝑝 𝑗 . Specifically, we

first estimate the components 𝑝 𝑗1 and 𝑝 𝑗2 using low resolution and

sample count. Since both of these terms are nonnegative, we treat

the results as images and use over-the-shelf tools (such as the OptiX

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

Image-space Adaptive Sampling for Fast Inverse Rendering • 5

denoiser [NVIDIA 2024]) and DLSS [NVIDIA 2024] to denoise and

upsample them (see Figure 2 for an example).

Additionally, during an inverse rendering optimization, we only

recompute 𝑝 𝑗 every few (e.g., 20) iterations, further reducing the

amortized overhead per iteration.

Stage 2. Given the computed probabilities (𝑝 𝑗 : 𝑗 = 1, 2, . . . ,𝑚𝑰),
the second stage of our pipeline starts with drawing pixel indices

based on these probabilities. For each drawn index 𝑗 , we trace a

camera ray through the corresponding pixel and construct a full

path using unidirectional path tracing. This path is used to estimate

the primal pixel value 𝐼 𝑗 as well as the derivative (𝜕𝑰L) 𝑗 .
Then, we trace another path independently through the same

pixel 𝑗 . This path is used to compute the derivative d𝐼 𝑗/d𝜽 and, in turn,

update the final gradient dL/d𝜽 . To implement this efficiently, we in-

corporate the path replay backpropagation (PRB) technique [Vicini

et al. 2021].

Discussion. In Stage 2, we assume that the gradient (𝜕𝑰L) 𝑗 of the
loss L can be estimated solely based on 𝐼 𝑗 since only part of the

image 𝑰 is estimated unbiasedly. In practice, this is the case for many

commonly adopted losses. When L is the L2 loss, for example, it

holds that

(𝜕𝑰L) 𝑗 = 2

(
𝐼 𝑗 − 𝐼

target

𝑗

)
, (17)

where 𝐼
target

𝑗
denotes the 𝑗-th pixel of the target image 𝑰 . However,

this assumption can be violated for more sophisticated losses. We

consider efficient estimation of (𝜕𝑰L) 𝑗 for such losses future work.

Further, since we use the Monte Carlo rendering ⟨𝐼 𝑗 ⟩ to estimate

the gradient ⟨(𝜕𝑰L) 𝑗 ⟩, the latter is only unbiased if the relation

between 𝐼 𝑗 and (𝜕𝑰L) 𝑗 is linear—which holds when the loss is 𝐿2,

as shown in Eq. (17), but is not generally the case for other losses.

Fortunately, this is hardly a problem in practice since having biased

𝑝 𝑗 does not affect the unbiasedness of the final gradient ⟨dL/d𝜽⟩.

4.2 Multi-Resolution Modeling
For scenes containing objects with greatly varying levels of details

(e.g., a mixture of textured and untextured objects), the effectiveness

of our adaptive sampling can slightly degrade as our formulation in

Eq. (10) does not fully capture the correlation between pixels due

to being controlled by the same set of parameters. In practice, this

can cause our method to allocate more samples for low-detail (e.g.,

untextured) objects, slowing down the convergence of high-detail

(e.g., textured) ones.

To address this problem, we introduce an optional step that com-

putes the sampling probabilities 𝑝 𝑗 ′, 𝑑 at multiple downsampled

levels 𝑑 = 1, 2, . . . , 𝐷 and combine the results to obtain the final 𝑝 𝑗 .

Specifically, let (𝑝 𝑗 ′, 𝑑 : 𝑗 ′ = 1, 2, . . .) be the sampling probabilities

computed on a (2𝑑 × 2
𝑑)-downsampled resolution. We then set the

final pixel sampling probabilities as

𝑝 𝑗 :=

𝐷∑︁
𝑑=0

4
𝑑 · 𝑝 𝑗𝑑 , 𝑑 , (18)

where 𝑗𝑑 denotes the index of the (2𝑑 ×2
𝑑)-downsampled pixel that

contains the original pixel 𝑗 (for 𝑑 = 0, 1, . . . , 𝐷).

𝑝 𝑗1𝑝 𝑗1 𝑝 𝑗1 (enhanced)𝑝 𝑗1 (enhanced)

𝑝 𝑗2𝑝 𝑗2 𝑝 𝑗2 (enhanced)𝑝 𝑗2 (enhanced)

Fig. 2. We compute 𝑝 𝑗1 and 𝑝 𝑗2 defined in Eq. (12) approximately by first
obtaining low-resolution estimates using low sample counts, and enhancing
them by applying upsampling and denoising.

In this way, a pixel 𝑗 ′ affected by many parameters at some high

downsampling level𝑑 will likely receive some large sampling weight

𝑝 𝑗 ′, 𝑑 . Then, this weight will be propagated to all the correspond-

ing pixels 𝑗 at the original resolution via Eq. (18), increasing the

probabilities for them to be sampled.

In practice, we compute 𝑝 𝑗 ′, 𝑑 by executing Stage 1 of Algorithm 1

multiple times with varying (target) resolutions.

4.3 Custom Derivative Computation
First, we discuss the computation of the sum of partial derivatives

𝑚𝜽∑︁
𝑘=1

𝜕𝑓𝑗 (𝒙̄ ;𝜽)
𝜕𝜃𝑘

, (19)

which neglects the squaring operation on the right-hand side of

Eq. (15) for each pixel 𝑗 .

Given a sampled light path 𝒙̄ , a naïve approach is to: (i) acquire

the derivative vector 𝜕𝑓𝑗 (𝒙̄ ;𝜽)/𝜕𝜽 ∈ R𝑚𝜽
by applying reverse-mode

automatic differentiation (AD) to the measurement contribution

𝑓𝑗 (𝒙̄ ;𝜽); and (ii) compute the sum of the derivative vector.

Unfortunately, this approach requires back-propagating gradients

per pixel—which is usually impractical. Luckily, a special forward-

mode AD function forward_to from Dr.Jit [Jakob et al. 2022] can

compute this sum—which we explain in the following.

The function forward_to includes two stages: the first backward
enqueue stage traverses the computation graph backwards from

all 𝑓𝑗 at once to find potential paths along which gradients can

flow to. The second forward traverse stage performs a gradient

propagation pass along all detected variables 𝜃𝑘 , which accumulates

the gradient from each leaf node 𝜕𝑓𝑗 (𝒙̄ ;𝜽)/𝜕𝜃𝑘 . Dr.Jit shares the same

computational graph on GPU for forward-mode and reverse-mode

AD that captures operations for subsequent derivative propagation,

which avoid forward propagation from each variables individually.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

6 • Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu, Zhao Dong, and Shuang Zhao

We now discuss the computation of the sum of squared partial

derivatives

𝑚𝜽∑︁
𝑘=1

(
𝜕𝑓𝑗 (𝒙̄ ;𝜽)

𝜕𝜃𝑘

)
2

, (20)

on the right-hand side of Eq. (15) for each pixel 𝑗 . We create a custom

forward_to function to compute the squared sum in Eq. (20). The

process has the identical backward enqueue stage to traverse the

computation graph. However, in the forward traverse stage, it

accumulates the square gradient for each leaf node 𝜕𝑓𝑗 (𝒙̄ ;𝜽)/𝜕𝜃𝑘 by

squaring its value before the final accumulation in the function

accum.

To further reduce the memory footprint and improve efficiency,

we implement this method upon PRB [Vicini et al. 2021]: which

performs AD for each light path and is fully compatible with our

method.

5 RESULTS
We implement our technique described in §3 and §4 on the GPU

using the Dr.Jit numerical backend [Jakob et al. 2022]. In the fol-

lowing, we show ablation studies and additional inverse-rendering

comparisons in §5.1 and §5.2, respectively.

Experiment configurations. To demonstrate the generality of our

method, our experiments involve a wide range of inverse render-

ing problems, using the Adam optimizer [Kingma and Ba 2014],

including SVBRDF reconstruction, shape optimization, and inverse

volume rendering. Some of these problems also involve complex

light transport effects.

We set the total sample budget (i.e., total number of light paths

traced per iteration) to about 100K for all inverse rendering results.

For multi-resolution modeling, we set number of depth 𝐷 = 4 for

all results. Lastly, as discussed in §4, we update the pixel sampling

probabilities 𝑝 𝑗 every 20 iterations.

Equal-time comparisons. When comparing inverse-rendering re-

sults, we use identical losses, initializations, and input images as

well as roughly equal execution time per iteration. The total op-

timization time of our experiments ranges from 10 seconds to 8

minutes (on a workstation with a RTX 4090 GPU).

5.1 Evaluation & Ablation
Variance evaluation. We conduct another experiment to directly

evaluate the effectiveness of our adaptive sampling (§3) in reducing

the variance of the gradient estimate ⟨dL/d𝜽⟩. As shown in Figure 3,

this experiment uses a scene where three diffuse objects are placed

in front of a mirror. The experiment simulates a single iteration of an

inverse-rendering optimization where the roughness of the mirror

is optimized. Given the pixel sampling probabilities 𝑝 𝑗 , we estimate

the loss gradient ⟨dL/d𝜽⟩ at a fixed roughness value using Eq. (4)

1,024 times and examine the variance of individual estimation results.

Comparedwith the simple scheme used by Su andGkioulekas [2024],

our method is capable of reducing the variance by over 3×.

Loss function. We demonstrate the robustness of our technique

to different loss functions. Figure 4 shows a JumpyDumpy scene

where a glossy textured object is illuminated by an environment

𝑰𝑰 𝑰 target𝑰 target

𝑝 𝑗 ∝ |𝜕𝑰 L|𝑝 𝑗 ∝ |𝜕𝑰 L| 𝑝 𝑗 (ours)𝑝 𝑗 (ours)

V[⟨dL/d𝜽 ⟩] = 1.04 V[⟨dL/d𝜽 ⟩] = 0.31

Fig. 3. Variance comparison:We directly compare the variance of loss
gradient estimates ⟨dL/d𝜽 ⟩ using two pixel sampling probabilities. In this
example, we use a single parameter 𝜃 that controls the roughness of the
mirror. The variance numbers are acquired by repeatedly evaluating Eq. (4)
and examining the statistics of the results.

map with a bright sun. We optimize the albedo of this object. The

bright sun and glossy surface cause drastic changes in brightness

across different pixels. For inverse-rendering optimizations driven

by both L2 and relative L2 losses, our method outperforms uniform

mini-batching.

Multi-resolution scheme. We demonstrate the effectiveness of our

multi-resolution scheme described in §4.2 in Figure 5 that uses

a Cornell box containing a texture-less trash can and a textured

Catcake. Using one input image, we jointly optimize the albedo

values for both objects. Without our multi-resolution scheme, the

sampling probability 𝑝 𝑗 distributes samples relatively evenly on both

objects, leading to slower convergence for the textured Catcake.

In the contrary, without scheme, the probability focuses more on

the textured object, leading to more uniform convergence for both

objects.

Differential samplers. Our method is not limited to any specific

sampling scheme for the estimation of pixel value derivatives ⟨𝜕𝐼 𝑗/𝜕𝜃𝑘⟩.
In Figure 6, we show an example that performs differential BSDF

sampling [Belhe et al. 2024]. This example involves a Cornell box

containing a glossy trash can with a spatially invariant BRDF. We

optimize the surface roughness of the trash can. Using one input

image and a small sample budget, the uniform-sampling with differ-

ential sampler method still stucks at the initial configuration due to

high noise. Our method, on the other hand, allows the optimization

to converge nicely.

5.2 Inverse-Rendering Comparisons
We now compare inverse-rendering results obtained under equal

time. We adjust optimization parameters (e.g., learning rate) for the

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

Image-space Adaptive Sampling for Fast Inverse Rendering • 7

ReferenceReference InitalInital

Ours (abs. 𝐿2)Ours (abs. 𝐿2) Uniform (abs. 𝐿2)Uniform (abs. 𝐿2)

Ours (rel. 𝐿2)Ours (rel. 𝐿2) Uniform (rel. 𝐿2)Uniform (rel. 𝐿2)

Fig. 4. Loss functions: Our technique is robust to the choice of loss func-
tions. In this example, we compare inverse-rendering results generated using
our technique and uniform mini-batching at equal time with absolute and
relative 𝐿2 losses. Our method outperforms the baseline in both cases.

baseline methods when needed to ensure that they perform as well

as possible under the same time budget.

Material reconstruction. Figure 8 contains inverse-rendering re-
sults where surface or volume material properties are optimized. We

use the principled BSDF [Burley et al. 2015] for all surface materials.

We compare our method to the two baselines discussed in §3: one

with constant 𝑝 𝑗 and the other with 𝑝 𝑗 ∝ |𝜕𝑰L 𝑗 |.
Each example uses one or more images with 4M pixels, and the

optimizations use a budget of about 100K sample paths per iteration.

The Dodoco scene uses a similar setting as Figure 3, and we

optimize the roughness of the mirror. The Pottery scene involves

a glossy object under environmental lighting with bright sun light,

and the spatially varying albedo is optimized using 16 input images.

For both examples, our technique outperforms the baselines.

The Earth2Mars scene contains two spheres under environmen-

tal lighting. Initialized with the spheres having opposite textures as

the target, we optimize the textures (specifying diffuse albedo) of

these spheres using 16 input images. Since one of the two spheres

resides inside a glass enclosure, the rendering variance of the two

spheres differs greatly. Being the only variance-aware technique,

our method allows faster convergence than both baseline methods.

The Smoke scene involves a volumetric smoke under environmen-

tal lighting. Using 16 input images, we optimize per-voxel density

ReferenceReference UniformUniform

Ours (no multi-res)Ours (no multi-res) Ours (w/ multi-res)Ours (w/ multi-res)

Fig. 5. Multi-resolution modeling: Our multi-resolution scheme intro-
duced in §4.2 allows uniform convergence on objects with greatly varying
levels of details. This example involves an untextured TrashCan and a tex-
tured Catcake, and we jointly optimizing the surface albedo of both objects.
Without our multi-resolution scheme, the optimization allocates most sam-
ples on the trashcan, reducing the convergence rate of the Catcake.

InitialInitial TargetTarget

UniformUniform OursOurs

Fig. 6. Differential BRDF sampling: Our method makes no assump-
tion on BRDF sampling used by the underlying primal and differentiable
rendering processes. In this example, image deriatives d𝐼 𝑗/d𝜽 are estimated
using the differential sampling method introduced by Belhe et al. [2024].
At equal time, our method outperforms uniform mini-batching by allowing
significantly faster convergence.

and color of the smoke. By allocating more samples to regions with

higher variance, our method again offers the faster convergence

than the baselines.

Additional comparisons. Lastly, we providemore inverse-rendering

results in Figure 9 where we compare our method to the baseline

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

8 • Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu, Zhao Dong, and Shuang Zhao

(a) Reference(a) Reference (b) 𝑝 𝑗 (4 spp)(b) 𝑝 𝑗 (4 spp) (c) 𝑝 𝑗 (16K spp)(c) 𝑝 𝑗 (16K spp)

Fig. 7. Failure case: For scenes that cannot be efficiently rendered using
unidirectional path tracing (a), our estimated sampling probability 𝑝 𝑗 can
be unreliable (b)—unless using impractically high sample counts (c).

with constant 𝑝 𝑗 . All scenes used by this figure use environmental

lighting. Earth uses one image with 16M pixels. Others use mul-

tiple images with 262K pixels per image. The optimizations use a

budget of about 100K sample paths per iteration.

The Earth scene involves an earth-like object covered by a glass

bell. We also observe the back of this object through a mirror. The

DodocoA scene contains an object lit by a outdoor environment

map. We optimize the spatially varying albedo of this object using

16 multi-view images. The Bowl scene contains a textured glossy

bowl, and we optimize albedo using 32 images of the object. We

initialize all these examples using a spatially invariant albedo of 0.5.

The Lego scene uses a NeRF-like setting with a lego bulldozer

described as an emissive volume (with no scattering). Using 32 input

images, we optimize per-voxel density and albedo for this object. In

addition, we use a coarse-to-fine scheme that starts with a resolution

of 8
3
and gradually increases to 256

3
(by doubling the resolution

every 200 iterations).

The DodocoB and Kirby scenes are used for shape optimization.

Starting with a sphere with 30K vertices, we optimize the shapes of

the objects (described as triangle meshes) using 16 input images. For

both examples, we use warped-area sampling [Bangaru et al. 2020]

to obtain the shape derivatives and the large-step method [Nicolet

et al. 2021] to update the object meshes.

In all cases, our technique outperforms the baseline thanks to low

variance in the loss gradient ⟨dL/d𝜽⟩.

6 DISCUSSION AND CONCLUSION
Limitations and future work. Our method assumes unidirectional

path tracing. Therefore, for problems that require using adjoint or

bidirectional methods (e.g., scenes with strong caustic effects), as

shown in Figure. 7, our method would be inapplicable. Our tech-

nique performs adaptive sampling in the image space (i.e., for pixels)

and currently works only when the underlying primal and differen-

tiable processes use unidirectional path tracing. Generalizing our

technique to support more sophisticated path sampling strategies

such as path-space methods to sample boundary light paths [Zhang

et al. 2020; Yan et al. 2022; Zhang et al. 2023] is an important topic

for future research.

Also, as discussed in §4.1, developing efficient methods to com-

pute (𝜕𝑰L) 𝑗 for general losses such as LPIPS [Zhang et al. 2018] is

worth exploring in the future.

Conclusion. We introduced an image-space adaptive sampling

technique to perform pixel-level mini-batching for inverse render-

ing while minimizing the variance of loss gradient estimates. By

considering both mean and variance of the underlying primal and

differentiable rendering processes, our technique is a significant

generalization of previous methods. Moreover, we discussed how

this sampling technique can be integrated into practical inverse ren-

dering pipelines, allowing smooth convergence with fast rendering

per iteration. We demonstrated the effectiveness of our technique by

comparing it with previous methods using several synthetic inverse

rendering examples.

ACKNOWLEDGMENTS
We would like to thank Qianhui Wu for artistic support. We would

like to thank Ning Zhou for providing the voice-over for the video.

The environment maps were provided by PolyHaven. The Mars

and Earth textures were provided by Solar System Scope. The Lego

model is from Blend Swap by Heinzelnisse. The Bowl model is from

the DTC dataset [Dong et al. 2025]. All other assets are inspired

creations by Yan [2024]. The assets are not products of Meta, nor

are they endorsed by Meta. This work started when Kai Yan was

an intern at Meta. This project was partially funded by NSF grant

2239627.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://polyhaven.com/hdris
https://www.solarsystemscope.com/textures/
https://www.blendswap.com/blend/11490
https://www.projectaria.com/datasets/dtc/

Image-space Adaptive Sampling for Fast Inverse Rendering • 9

REFERENCES
Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area

Sampling for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020).
Yash Belhe, Bing Xu, Sai Praveen Bangaru, Ravi Ramamoorthi, and Tzu-Mao Li. 2024.

Importance Sampling BRDF Derivatives. ACM Transactions on Graphics (2024).
Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge

University Press.

Brent Burley, Danny Chan, Luca Fascione, Michal Iwanicki, Natty Hoffman, Wenzel

Jakob, David Neubelt, Angelo Pesce, and Matt Pettineo. 2015. Physically Based

Shading in Theory and Practice. In ACM SIGGRAPH 2015 Courses.
G. Cai, K. Yan, Z. Dong, I. Gkioulekas, and S. Zhao. 2022. Physics-Based Inverse

Rendering Using Combined Implicit and Explicit Geometries. Computer Graphics
Forum 41, 4 (July 2022).

ZhaoDong, Ka Chen, Zhaoyang Lv, Hong-Xing Yu, Yunzhi Zhang, Cheng Zhang, Yufeng

Zhu, Stephen Tian, Zhengqin Li, Geordie Moffatt, Sean Christofferson, James Fort,

Xiaqing Pan, Mingfei Yan, Jiajun Wu, Carl Yuheng Ren, and Richard Newcombe.

2025. Digital Twin Catalog: A Large-Scale Photorealistic 3D Object Digital Twin

Dataset. arXiv:2504.08541

Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann Jensen. 2023. Denoising-Aware

Adaptive Sampling for Monte Carlo Ray Tracing. InACM SIGGRAPH 2023 Conference
Proceedings. Association for Computing Machinery, Article 32.

Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek. 2019.

Variance-aware multiple importance sampling. ACM Trans. Graph. 38, 6 (2019).
Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, Light, and

Material Decomposition from Images using Monte Carlo Rendering and Denoising.

arXiv:2206.03380 (2022).
J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal

Adaptive Sampling and Denoising. Computer Graphics Forum 39, 2 (2020).

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A

Just-In-Time Compiler for Differentiable Rendering. Transactions on Graphics (Pro-
ceedings of SIGGRAPH) 41, 4 (July 2022).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions
on Graphics 42, 4 (July 2023).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

CoRR abs/1412.6980 (2014).

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018).
Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing

discontinuous integrands for differentiable rendering. ACM Trans. Graph. 38, 6
(2019).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022).

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex

Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting Triangular 3D Models,

Materials, and Lighting From Images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-

dering of Geometry. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
40, 6 (Dec. 2021).

Merlin Nimier-David, Thomas Müller, Alexander Keller, and Wenzel Jakob. 2022. Unbi-

ased Inverse Volume Rendering with Differential Trackers. ACM Trans. Graph. 41,
4, Article 44 (July 2022).

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative

backpropagation: an adjoint method for lightning-fast differentiable rendering. ACM
Trans. Graph. 39, 4 (2020).

NVIDIA. 2024. NVIDIA DLSS 4 Introduces Multi Frame Generation & Enhancements

For All DLSS Technologies.

NVIDIA. 2024. NVIDIA OptiX 8.1 SDK.

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet

rendering. ACM Trans. Graph. 28, 5 (Dec. 2009).
Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A first-order analysis

of lighting, shading, and shadows. ACM Trans. Graph. 26, 1 (Jan. 2007).
Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,

and Jaroslav Křivánek. 2020. Variance-aware path guiding. ACM Trans. Graph. 39, 4
(2020).

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with

non-local means filtering. ACM Trans. Graph. 31, 6, Article 195 (2012).
Farnood Salehi, Marco Manzi, Gerhard Roethlin, Romann Weber, Christopher Schroers,

andMarios Papas. 2022. Deep Adaptive Sampling and Reconstruction Using Analytic

Distributions. ACM Trans. Graph. 41, 6 (2022).

Tanli Su and Ioannis Gkioulekas. 2024. Path sampling methods for differentiable

rendering. In Eurographics Symposium on Rendering.
Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin

Huang, Shuang Zhao, and Zhao Dong. 2023. Neural-PBIR reconstruction of shape,

material, and illumination. In Proceedings of the IEEE/CVF International Conference
on Computer Vision.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation:

Differentiating Light Paths using Constant Memory and Linear Time. Transactions
on Graphics (Proceedings of SIGGRAPH) 40, 4 (Aug. 2021).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for

Multi-view Reconstruction. NeurIPS (2021).
Peiyu Xu, Sai Bangaru, Tzu-Mao Li, and Shuang Zhao. 2023. Warped-Area Reparame-

terization of Differential Path Integrals. ACM Trans. Graph. 42, 6 (2023).
Kai Yan. 2024. Artistic support for rendering. https://yank.ai/.

Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient

estimation of boundary integrals for path-space differentiable rendering. ACM
Trans. Graph. 41, 4 (2022).

Kai Yan, Fujun Luan, Miloš Hašan, Thibault Groueix, Valentin Deschaintre, and Shuang

Zhao. 2023. PSDR-Room: Single Photo to Scene using Differentiable Rendering. In

ACM SIGGRAPH Asia 2023 Conference Proceedings.
Kai Yan, Vincent Pegoraro, Marc Droske, Jiří Vorba, and Shuang Zhao. 2024. Differenti-

ating Variance for Variance-Aware Inverse Rendering. In ACM SIGGRAPH Asia 2024
Conference Proceedings.

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and

Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling

Geometry and Appearance. Advances in Neural Information Processing Systems 33
(2020).

Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021. Antithetic

sampling for Monte Carlo differentiable rendering. ACM Trans. Graph. 40, 4 (2021).
Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.

Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020).
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.
Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou.

2022. Modeling Indirect Illumination for Inverse Rendering. In CVPR.
Ziyi Zhang, Nicolas Roussel, and Wenzel Jakob. 2023. Projective Sampling for Differen-

tiable Rendering of Geometry. ACM Trans. Graph. 42, 6 (2023).
Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, B. Moon, Ravi Ramamoorthi, Fab-

rice Rousselle, Pradeep Sen, Cyril Soler, and Sung-eui Yoon. 2015. Recent Advances

in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer
Graphics Forum 34 (05 2015).

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://arxiv.org/abs/2504.08541

10 • Kai Yan, Cheng Zhang, Sébastien Speierer, Guangyan Cai, Yufeng Zhu, Zhao Dong, and Shuang Zhao

(a) Initial (b) Target (c) Ours (d) 𝑝 𝑗 ∝ | (𝜕𝑰 L) 𝑗 | (e) 𝑝 𝑗 ≡ const. (f) Param. error

D
od

oc
o

0 2 4 6 8 10
Time (s)

0

1

2

3

4

1e 2
Uniform
Naive
Ours

Po
tt
er
y

0 1 2 3 4
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5
1e 2

Uniform
Naive
Ours

Ea
rt
h2

M
ar
s

0 1 2 3 4 5 6
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
1e 1

Uniform
Naive
Ours

Z
o
o
m
e
d
v
i
e
w

Sm
ok

e

0.0 0.5 1.0 1.5
Time (min)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 2
Uniform
Naive
Ours

Z
o
o
m
e
d
v
i
e
w

Fig. 8. Material reconstruction: We compare inverse-rendering results where object material properties are optimized. For each example, we show results
obtained in equal optimization time using three pixel sampling strategies: (c) our technique (12); (d) previous method (5); and (e) uniform sampling. The
parameter error (f) measures the difference (in 𝐿2) between the optimized parameters and the groundtruth. It is only used for evaluation (i.e., not for
optimization).

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

Image-space Adaptive Sampling for Fast Inverse Rendering • 11

(a) Initial (b) Target (c) Ours (d) Uniform (e) Param. error
Ea

rt
h

0 1 2 3 4
Time (min)

0

1

2

3

4

5

1e 2
Uniform
Ours

D
od

oc
oA

0.0 0.2 0.4 0.6 0.8 1.0
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e 2
Uniform
Ours

B
ow

l

0 1 2 3 4
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2
Uniform
Ours

Le
go

0 2 4 6 8
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e 1
Uniform
Ours

D
od

oc
oB

0.0 0.2 0.4 0.6 0.8 1.0
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

1e 1
Uniform
Ours

K
ir
by

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e 2
Uniform
Ours

Fig. 9. Additional inverse-rendering comparison: We compare inverse-rendering results where material properties are optimized for DodocoA, Earth,
and Bowl, and object geometries are optimized for Dodocob and Kirby. For each example, we show results obtained in equal optimization time using two
pixel sampling strategies: (c) our technique (12); and (d) uniform sampling. The parameter error is only used for evaluation (i.e., not for optimization).

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

	Abstract
	1 Introduction
	2 Related Work
	3 Image-Space Adaptive Sampling
	3.1 Scalar Case
	3.2 General Case

	4 Inverse Rendering Using Image-Space Adaptive Sampling
	4.1 Estimating Loss Gradients
	4.2 Multi-Resolution Modeling
	4.3 Custom Derivative Computation

	5 Results
	5.1 Evaluation & Ablation
	5.2 Inverse-Rendering Comparisons

	6 Discussion and Conclusion
	Acknowledgments
	References

