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Fig. 1. An overview of our core method: We utilize an online-learned neural field to model the space-conditioned importance sampling distribution (guiding
distribution) for the recursive term of the walk on stars (WoSt) estimator, achieving effective variance reduction.

Walk on stars (WoSt) has shown its power in being applied to Monte Carlo
methods for solving partial differential equations, but the sampling tech-
niques in WoSt are not satisfactory, leading to high variance. We propose
a guiding-based importance sampling method to reduce the variance of
WoSt. Drawing inspiration from path guiding in rendering, we approximate
the directional distribution of the recursive term of WoSt using online-
learned parametric mixture distributions, decoded by a lightweight neural
field. This adaptive approach enables importance sampling the recursive
term, which lacks shape information before computation. We introduce a
reflection technique to represent guiding distributions at Neumann bound-
aries and incorporate multiple importance sampling with learnable selection
probabilities to further reduce variance. We also present a practical GPU
implementation of our method. Experiments show that our method effec-
tively reduces variance compared to the original WoSt, given the same
time or the same sample budget. Code and data for this paper are at https:
//github.com/tyanyuy3125/elaina.
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1 Introduction
Partial differential equations (PDEs) are commonly used to model
various phenomena such as heat transfer, wave propagation, and
fluid dynamics in physics, engineering, and computer graphics. Re-
cently, Monte Carlo methods for solving PDEs have been gaining
attention due to their advantages, such as eliminating the need for
meshing, handling intricate geometries, and supporting local eval-
uations. This series of methods began with Sawhney and Crane
[2020], who applied walk on spheres (WoS) [Muller 1956] to the
Dirichlet Poisson problem, which was later extended by walk on
stars (WoSt) [Miller et al. 2024b; Sawhney et al. 2023] to support
more boundary conditions. These advancements have found broad
applications, including volume rendering [Qi et al. 2022], fluid sim-
ulation [Jain et al. 2024; Rioux-Lavoie et al. 2022], heat simula-
tion [De Lambilly et al. 2023], robotics [Muchacho and Pokorny
2024], machine learning [Nam et al. 2024], shape modeling [de Goes
and Desbrun 2024], and infrared rendering [Bati et al. 2023].

Unfortunately, WoSt suffers from high variance and slow conver-
gence, especially for problems with complex domains or boundary
conditions. To address this problem, several recent methods [Bak-
bouk and Peers 2023; Li et al. 2023; Miller et al. 2023; Qi et al. 2022]
have adopted variance reduction techniques originated in Monte
Carlo rendering [Müller et al. 2021; Veach and Guibas 1995a] for
WoSt. The importance sampling family is effective for variance re-
duction in rendering, and so far, there have been explorations to
importance sample the non-recursive Neumann and source contri-
butions [Sawhney and Crane 2020; Sawhney et al. 2023] of WoSt.
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However, the recursive term of WoSt, lacking a closed form or shape
information before computation, poses a challenge for traditional
importance sampling techniques such as next event estimation [Im-
mel et al. 1986; Kajiya 1986]. As it currently stands, the recursive
term can only be sampled using uniform directional sampling.

We believe adaptive importance sampling techniques can handle
the recursive term, as their online learning approach enables opera-
tion without prior knowledge of the distribution shape or modifica-
tions to the formulation. Here, a representative approach in render-
ing is path guiding [Herholz et al. 2019; Müller et al. 2017; Vorba et al.
2014] which uses the observations from earlier samples to optimize
the importance sampling distribution (guiding distribution), and
uses the distribution to generate subsequent samples. Furthermore,
recent advances using neural fields to encode space-conditioned
parametric guiding distributions [Dong et al. 2023; Huang et al.
2024] have demonstrated exceptional performance in variance re-
duction, indicating the potential to apply path guiding to WoSt for
better reducing variance.

In this paper, we introduce a guiding-based importance sampling
method to reduce the variance of WoSt. Specifically, we approx-
imate the directional distribution of the recursive term of WoSt
using von Mises-Fisher (vMF) mixtures. The mixtures are decoded
by a lightweight neural field that takes space coordinates as input.
Then we employ gradient-based online learning on the neural field
to optimize the mixtures. This approach effectively handles high-
frequency variations in the solution field. Besides, we propose a
sample reflection technique on the mixtures to represent guiding
distributions at Neumann boundaries. This technique effectively
reduces variance around Neumann boundaries compared to trivial
approaches. Additionally, we explore multiple importance sampling
(MIS) with learnable selection probabilities in WoSt, which guar-
antees unbiasedness and adaptively adjusts the balance between
guiding and uniform directional sampling, further reducing vari-
ance. We present a practical GPU implementation of our method,
enabling efficient parallelization including neural field training and
geometric queries.
Our contributions are:

• a guiding-based importance sampling method for the WoSt
estimator,

• a sample reflection technique for guiding distributions at
Neumann boundaries, and

• learnable selection probabilities to balance guiding and uni-
form directional sampling in WoSt.

These contributions address the unique challenges ofWoSt, which
are discussed in detail in Section 2.3. We evaluate our method using
several 2D and 3D problems under equal time or equal sample
settings, demonstrating its effectiveness in variance reduction.

2 Related Work

2.1 Monte Carlo Methods for Solving PDEs
PDE Estimators and Their Applications. Recent exploration of

Monte Carlo methods for solving PDEs [Sawhney and Miller 2024]
has gained significant attention in the graphics community, as they
offer advantages over traditional methods like finite element (FEM)

and finite difference (FDM) by circumventing spatial discretiza-
tion challenges while providing better flexibility and performance.
The pioneering work, Monte Carlo Geometry Processing [Sawhney
and Crane 2020] revisits walk on spheres (WoS) [Muller 1956] to
solve linear elliptic equations with Dirichlet boundary conditions,
which is later extended to walk on stars (WoSt) [Ermakov and Sipin
2009; Sawhney et al. 2023; Simonov 2008] to handle Neumann and
Robin [Miller et al. 2024b] boundary conditions. Under the WoS(t)
frameworks, the methods are further generalized to address prob-
lems with spatially varying coefficients [Sawhney et al. 2022], sur-
face PDEs [Sugimoto et al. 2024b], and infinite domains [Nabizadeh
et al. 2021]. Monte Carlo methods have demonstrated broad appli-
cability in both forward [Bati et al. 2023; de Goes and Desbrun 2024;
De Lambilly et al. 2023; Jain et al. 2024; Muchacho and Pokorny 2024;
Nam et al. 2024; Rioux-Lavoie et al. 2022] and inverse [Miller et al.
2024a; Yilmazer et al. 2024; Yu et al. 2024] PDE problems. In paral-
lel with WoS(t), walk on boundary [Sugimoto et al. 2023], another
Monte Carlo estimator for PDEs, has been revisited and applied to
fluid simulations [Sugimoto et al. 2024a].

Variance Reduction Techniques. Similar to Monte Carlo rendering,
Monte Carlo PDE solvers face the challenges of slow convergence
and high variance. Various methods have been proposed to address
these issues. Reverse walk splatting [Qi et al. 2022] and neural
caches [Li et al. 2023] are effective but biased. Neural control vari-
ates [Li et al. 2024] achieve good wall-time performance, but incur
substantial computational overhead, making them impractical for
real-time visualization. Meanwhile, mean value caching [Bakbouk
and Peers 2023] and boundary value caching [Miller et al. 2023]
adopt novel formulations to reduce variance, but their recursive
terms are still sampled uniformly, thus orthogonal to our method. So
far, no existing method has performed importance sampling on the
recursive term of WoSt. Our method explores using online-learned
mixtures to perform importance sampling on the recursive term to
reduce variance, practically and unbiasedly.

2.2 Path Guiding in Rendering
In Monte Carlo rendering, path guiding is a data-driven adaptive
importance sampling scheme which learns the importance sam-
pling distribution (guiding distribution) from previous samples to
improve subsequent samples, thus reducing variance. Research in
path guiding primarily focuses on how to represent, store, and opti-
mize the guiding distribution across spatial, and recently, temporal
domain [Dong et al. 2024]. Early attempts in this field include con-
structing spatially cached histograms [Jensen 1995], cones [Hey
and Purgathofer 2002] or Gaussian mixtures [Vorba et al. 2014].
A well-known recent work is Practical Path Guiding [Müller et al.
2017], which utilizes SD-trees to implement path guiding practical
for production environments. Subsequent works have considered
volume rendering [Herholz et al. 2019], caustics [Fan et al. 2023; Li
et al. 2022], path space [Reibold et al. 2018], variance-aware sam-
pling [Rath et al. 2020], spatio-directional mixture models [Dodik
et al. 2022], and differentiable rendering [Fan et al. 2024]. In the
deep learning era, path guiding based on neural networks have
also been explored, such as employing convolutional neural net-
works to reconstruct radiance fields [Huo et al. 2020; Zhu et al.
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2021], or using invertible neural networks to model complex distri-
butions [Müller et al. 2019]. Recently, methods utilizing neural fields
to encode parameterized guiding distributions [Dong et al. 2023;
Huang et al. 2024] have emerged as the state-of-the-art in the field
of path guiding. Our work is inspired by path guiding in rendering,
with unique improvements tailored for 2D and 3D PDE problems,
including reflection transformations on the guiding distribution to
handle Neumann boundaries and learnable selection probabilities
to combine uniform directional sampling and guiding adaptively.

2.3 WoSt-Specific Challenges Beyond Light Transport
2.3.1 Parallax Property. In rendering, the sampling region changes
smoothly as viewpoint shifts. In contrast, WoSt’s star-shaped sam-
pling region exhibits abrupt deformations around non-convex ge-
ometry, expanding or shrinking dramatically with small evaluation-
point movements. This instability challenges traditional guiding
structures [Ruppert et al. 2020]. This explains our empirical choice
of neural fields.

2.3.2 Boundary Handling. Rendering methods often exploit cosine-
weighted BRDFs to bound sampling domains [Diolatzis et al. 2020].
However, WoSt lacks a BRDF analogue, and its Neumann bound-
aries may produce sharp, high-value distributions at grazing angles—
unlike rendering, where BRDFs typically diminish at such angles.
This discrepancy explains our adoption of sample reflection at Neu-
mann boundaries.

2.3.3 Selection Probability. While learnable selection probability
is common in rendering [Diolatzis et al. 2020; Huang et al. 2024;
Müller et al. 2019], it is used to combine guiding distributions and
BSDFs, and the suitable distribution to combine for WoSt has not
been proposed.We observe that, as the solution field of linear elliptic
equations is smooth, the distributions on many small star-shaped
regions near Dirichlet boundaries or Neumann silhouettes are close
to uniform distribution. This consideration motivates performing
learnable selection with uniform sampling for WoSt.

3 Background

3.1 Linear Elliptic Equations
Walk on stars (WoSt) primarily targets linear elliptic equations,
which encompass a wide variety of forms. However, the structure
of WoSt remains largely consistent across different formulations.
We thus focus on the most typical case—the Poisson equation with
Dirichlet and Neumann boundary conditions:

Δ𝑢 (𝑥) = 𝑓 (𝑥) on Ω,

𝑢 (𝑥) = 𝑔(𝑥) on 𝜕ΩD,

𝜕𝑢 (𝑥)
𝜕𝑛𝑥

= ℎ(𝑥) on 𝜕ΩN,

(1)

where the boundary of the domain Ω ⊂ R𝑑 (𝑑 = 2, 3) is parti-
tioned into a Dirichlet part 𝜕ΩD and a Neumann part 𝜕ΩN with
prescribed values 𝑔 and ℎ (resp.). Δ is the negative-semidefinite
Laplacian, 𝑢 : Ω → R is the unknown solution, and 𝑓 : Ω → R
is a source term. This equation can describe, e.g., the steady-state
temperature distribution, where 𝑓 represents the heat source or sink,

𝑔 corresponds to the temperature on the boundary, and ℎ denotes
the heat flux on the boundary.

3.2 The Walk on Stars (WoSt) Estimator

interior pointDirichlet boundary

epsilon shell
boundary pointNeumann boundary

Fig. 2. Illustration of the WoSt estimator in 2D. Left : An illustration of a
step. 𝑥𝑘 is the query point, 𝑥𝑘+1 is the next walk location, 𝑦𝑘+1 is the source
sample point, and 𝑧𝑘+1 is the Neumann boundary sample point. Right : An
entire walk of WoSt, which iteratively samples the next walk location until
it reaches the Dirichlet boundaries’ 𝜖-shell.

We define the 𝜖-shell 𝜕Ω𝜖D := {𝑥 ∈ Ω : min𝑦∈𝜕ΩD ∥𝑥 − 𝑦∥ ≤ 𝜖}
for a manually specified small 𝜖 > 0, which is the region where the
walks terminate. The solution𝑢 (𝑥𝑘 ) at any query point 𝑥𝑘 ∈ Ω\𝜕Ω𝜖D
for Eq. 1 can be obtained using the following single-sample WoSt
estimator [Sawhney et al. 2023]:

⟨𝑢 (𝑥𝑘 )⟩ =
𝑃𝐵 (𝑥𝑘 , 𝑥𝑘+1) ⟨𝑢 (𝑥𝑘+1)⟩
𝛼 (𝑥𝑘 ) 𝑝𝜕St(𝑥𝑘 ,𝑟 ) (𝑥𝑘+1)

− ⟨𝑁 ⟩ + ⟨𝑆⟩,

⟨𝑁 ⟩ = 𝐺𝐵 (𝑥𝑘 , 𝑧𝑘+1) ℎ(𝑧𝑘+1)
𝛼 (𝑥𝑘 ) 𝑝𝜕StN(𝑥𝑘 ,𝑟 ) (𝑧𝑘+1)

,

⟨𝑆⟩ = 𝐺𝐵 (𝑥𝑘 , 𝑦𝑘+1) 𝑓 (𝑦𝑘+1)
𝛼 (𝑥𝑘 ) 𝑝St(𝑥𝑘 ,𝑟 ) (𝑦𝑘+1)

,

(2)

where ⟨𝑁 ⟩ and ⟨𝑆⟩ are non-recursive Neumann and source contribu-
tions, resp.; 𝐵 is a ball centered at 𝑥𝑘 with radius 𝑟 ; the radius 𝑟 equals
to the smaller value between the distance from 𝑥𝑘 to 𝜕ΩD and the
distance from 𝑥𝑘 to the nearest silhouette on 𝜕ΩN; the star-shaped
region St := 𝐵 ∩ Ω; 𝜕St denotes the boundaries of St; 𝜕StN denotes
the Neumann boundaries of St; 𝛼 (𝑥𝑘 ) is set to 1 if 𝑥𝑘 lies within
St, 1/2 if it lies on the boundary of St, and 0 if it lies outside St; 𝐺𝐵
denotes the Green’s function defined over the sphere 𝐵 [Sawhney
et al. 2023, Eq. 24], while 𝑃𝐵 , the Poisson kernel on 𝐵, is defined as
𝑃𝐵 = 𝜕𝐺𝐵/𝜕𝑛; 𝑝 represents the PDF of the sampler. The illustration
of this single-sample Monte Carlo estimator can be found in Fig. 2.

In a walk, the recursive estimator begins from an arbitrary evalu-
ation point within Ω\𝜕Ω𝜖D; at each step, the estimator performs up
to three sampling operations around the query point 𝑥𝑘 :

(1) Sample source contribution at point 𝑦𝑘+1 ∈ St.
(2) Sample Neumann contribution at point 𝑧𝑘+1 ∈ 𝜕St ∩ 𝜕ΩN.
(3) Sample the next walk location 𝑥𝑘+1 ∈ 𝜕St.
The walk continues until it reaches 𝜕Ω𝜖D, where it uses the Dirich-

let data 𝑔 at the closest point 𝑥𝑘 ∈ 𝜕ΩD to set 𝑢 (𝑥𝑘 ) := 𝑔(𝑥𝑘 ). The
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first term of Eq. 2 is an unknown term that needs to be estimated
recursively, similar to the scenario encountered in Monte Carlo ren-
dering, thus we name it as recursive term. The recursive term lacks
a closed form expression or shape information before computation,
posing significant challenges for traditional importance sampling
approaches. Therefore, in this paper, we employ guiding-based im-
portance sampling at this term to achieve variance reduction.

3.3 von Mises-Fisher Mixture Model
To fit the target distribution (see Section 4.1) online for importance
sampling, we adopt the vonMises-Fisher (vMF)mixturemodel. Since
PDE problems are often solved in various dimensions, we adopt the
generalized form of the vMF distribution. The vMF distribution on
the (𝑑 − 1)-sphere S𝑑−1 in R𝑑 (𝑑 = 2, 3) is defined as:

𝑣 (𝜈 | 𝜇, 𝜅) = 𝜅𝑑/2−1

(2𝜋)𝑑/2𝐼𝑑/2−1 (𝜅)
exp(𝜅𝜇T𝜈), (3)

where 𝜈 ∈ S𝑑−1 represents a direction, 𝜅 ∈ [0, +∞) and 𝜇 ∈ S𝑑−1

define the concentration and mean of the vMF distribution, resp.,
and 𝐼𝑘 denotes the modified Bessel function of the first kind at order
𝑘 . We refer to Appendix A for specific forms of vMF distribution
in different dimensions. The vMF mixture model is thus a convex
combination of 𝐾 vMF components:

V(𝜈 | Θ) =
𝐾∑︁
𝑖=1

𝜆𝑖 · 𝑣 (𝜈 | 𝜇𝑖 , 𝜅𝑖 ), (4)

where Θ ∈ R(2+𝑑 )×𝐾 is the set of mixture parameters, containing 𝐾
vMF components, each with 𝜆𝑖 ∈ [0, 1], 𝜅𝑖 and 𝜇𝑖 . Here, the mixture
weight 𝜆𝑖 satisfies

∑
𝑖 𝜆𝑖 = 1. The vMF mixture model is naturally

defined on the sphere across various dimensions, which aligns with
the directional nature of the recursive term.
For 3D problems, we use the sampling method for the mixtures

from Tokuyoshi [2025], while for 2D problems, we use the method
from Best and Fisher [1979].

4 Method

4.1 Importance Sampling the Recursive Term
We reparameterize the recursive term of the WoSt estimator (Eq. 2)
using the unit-length vector 𝜈 , yielding an estimator of the following
form:

⟨𝑢 (𝑥𝑘 )⟩ =
⟨𝑢 (𝜈 ;𝑥𝑘 )⟩

∥S𝑑−1∥ 𝛼 (𝑥𝑘 ) 𝑝 (𝜈 | 𝑥𝑘 )
− ⟨𝑁 ⟩ + ⟨𝑆⟩, (5)

where 𝜈 =
𝑥𝑘+1−𝑥𝑘
∥𝑥𝑘+1−𝑥𝑘 ∥ ∈ S𝑑−1 (𝑑 = 2, 3), ∥S𝑑−1∥ is the area of S𝑑−1,

and 𝑝 (𝜈 | 𝑥𝑘 ) is the directional PDF of the sampler conditioned
on 𝑥𝑘 . We refer to Appendix B for a detailed derivation. For 𝑥𝑘 ∈
𝜕ΩN with a normal1 𝑛(𝑥𝑘 ), the following condition of 𝑝 is satisfied,
reflecting the fact that Neumann boundaries only have one valid
side in random walk:

𝑝 (𝜈 | 𝑥𝑘 ) = 0 when 𝜈 · 𝑛(𝑥𝑘 ) ≤ 0. (6)

1In this paper, we stipulate that the normal vector points toward the region where the
walk is currently located. This assumption also applies to double-sided boundaries.

In this formulation, the PDF 𝑝u of uniform directional sampling2
adopted by the original WoSt is thus:

𝑝u (𝜈 | 𝑥𝑘 ) =


2𝐻 (𝜈 ·𝑛 (𝑥𝑘 ) )
∥S𝑑−1 ∥ , if 𝑥𝑘 ∈ 𝜕ΩN,
1

∥S𝑑−1 ∥ , otherwise,
(7)

where 𝐻 (·) is the unit step function. To reduce the variance of the
recursive term, as illustrated in Fig. 3, we aim to sample from an
importance distribution defined on S𝑑−1, referred to as the guiding
distribution 𝑝g, that approximately satisfies

𝑝g (𝜈 | 𝑥𝑘 ) ∝ |𝑢 (𝜈 ;𝑥𝑘 ) | . (8)
We denote the right-hand side of Eq. 8 as 𝑝t (𝜈 | 𝑥𝑘 ), i.e., the target
distribution. Next, we will discuss how to fit the guiding distribution
to the target distribution.

Dirichlet boundary

Guiding distribution

Neumann boundary

Fig. 3. Illustration of the guiding distribution at an arbitrary step. The guid-
ing distribution is defined on S𝑑−1 (𝑑 = 2, 3) , with a goal to be proportional
to |𝑢 | on 𝜕St. The sampler uses this distribution for importance sampling.

4.2 Representing and Learning the Guiding Distribution
We adopt vMF mixture model (Eq. 4) as the guiding distribution
(Eq. 8) conditioned on 𝑥 ∉ 𝜕ΩN:

𝑝g (𝜈 | 𝑥) = V(𝜈 | Θ(𝑥)) . (9)

whereΘ(𝑥) is the space-conditioned form ofΘ in Eq. 4. To represent
it, we employ a neural field NN(𝑥 | Φ) with trainable parameters Φ
to output its predicted values Θ̂(𝑥):

NN(𝑥 | Φ) = Θ̂(𝑥), (10)

where NN consists of a multi-resolution feature grid [Hadadan et al.
2021] and a lightweight multi-layer perceptron (MLP). The infer-
ence and training procedure is illustrated in Fig. 4. Given a query
point 𝑥 , the neural field first encodes it through the multi-resolution
feature grid, producing a feature vector that is then passed into
the MLP. The MLP outputs a tensor of dimension (dim (Θ(𝑥)) + 1),
containing the unnormalized parameters Θ̂′ (𝑥) of the mixtures, and
the selection probability 𝑐′ (see Section 4.4). To ensure that each out-
put component lies within a valid range, we apply a normalization
mapping, as detailed in Tab. 1. The resulting mixtures with valid
predicted parameters Θ̂(𝑥) are then used to sample the direction of
the next walk location.
2The WoSt paper refers to this approach as importance sampling the Poisson kernel. To
avoid confusion with our method, we consistently refer to the sampling approach used
in the original WoSt as uniform directional sampling throughout this paper.
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Spatial query

Multi-resolution
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Feature
vector

Forward process
Derivative back-propagation

Guiding
distribution

Selection
probability

Li
gh
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t 

M
LP

vMF mixture parameters

Normalization

Fig. 4. Our neural field inference and training pipeline. During inference,
the spatial query coordinates are encoded by a multi-resolution feature grid
to produce feature vectors. These vectors are then fed into a lightweight
MLP to obtain the parameters of the guiding distribution Θ̂ (Eq. 10) and a
selection probability 𝑐 (Eq. 15). During training, ⟨∇Θ𝐷KL ⟩ (Eq. 13) for the
guiding distribution and ⟨∇𝑐𝐿⟩ (Eq. 17) for the selection probability are
back-propagated all the way to the grid and MLP parameters.

Table 1. Neural field outputs, and their corresponding normalization map-
pings. We refer to Section 3.3 for explanations of mixture parameters.

Parameter NN output Normalization mapping

𝜇𝑖 ∈ S𝑑−1 𝜇′
𝑖
∈ R𝑑 𝜇𝑖 = 𝜇

′
𝑖
/∥𝜇′

𝑖
∥

𝜅𝑖 ∈ [0, +∞) 𝜅′
𝑖
∈ R 𝜅𝑖 = exp(𝜅′

𝑖
)

𝜆𝑖 ∈ (0, 1) 𝜆′
𝑖
∈ R 𝜆𝑖 = exp(𝜆′

𝑖
)/∑𝐾𝑗=1 exp(𝜆′

𝑗
)

𝑐 ∈ (0, 1) (Eq. 15) 𝑐′ ∈ R 𝑐 = sigmoid(𝑐′)

To fit the vMF mixture model V to the target distribution 𝑝t (see
Section 4.1) at 𝑥 , we introduce the Kullback-Leibler (KL) divergence
as

𝐷KL (𝑝t ∥ V;Θ) =
∫
𝜈

𝑝t (𝜈) log
𝑝t (𝜈)

V(𝜈 | Θ̂)
d𝜈. (11)

The optimization objective of the neural-field parameters Φ is thus

Φ∗ = argmin
Φ

E𝑥
[
𝐷KL

(
𝑝t (𝑥) ∥ V;Θ(𝑥)

)]
. (12)

We use a single-sample Monte Carlo estimator to estimate ∇Θ𝐷KL:

⟨∇Θ𝐷KL (𝑝t ∥ V;Θ)⟩ = −𝑝t (𝜈)∇ΘV(𝜈 | Θ̂)
𝑝 (𝜈 | Θ̂)V(𝜈 | Θ̂)

, (13)

where𝑝 is the PDF of the sampler given by Eq. 15.We back-propagate
this derivative along the purple arrows in Fig. 4, updating the pa-
rameters Φ of both the MLP and the multi-resolution feature grid
using gradient-based optimization [Kingma 2014].

4.3 Sample Reflection at Neumann Boundaries
For 𝑥 ∈ 𝜕ΩN, samples from the original mixtures span the full sphere
thus do not satisfy Eq. 6. Therefore, we reflect invalid samples along

the local tangent plane, resulting in the following PDF:

𝑝g (𝜈 | 𝑥) =
{

0, if 𝜈 · 𝑛(𝑥) ≤ 0,
V(𝜈+ | Θ(𝑥)) + V(𝜈− | Θ(𝑥)), otherwise,

(14)
where 𝜈+ = 𝜈 , and 𝜈− is the reflection of 𝜈+ off 𝜕Ω𝑁 with normal
𝑛(𝑥), i.e. 𝜈− = 𝜈+ − 2

(
𝜈+ · 𝑛(𝑥)

)
𝑛(𝑥).

We have discussed how the strategy we adopt differs from similar
strategies in rendering and fits the PDE problems in Section 2.3.2.
Section 6.3.2 gives an ablation.

4.4 Multiple Importance Sampling with Learnable
Selection Probabilities

Linear elliptic equations often contain relatively smooth regions.
In these regions, uniform directional sampling is sometimes the
optimal approach, whereas learned vMF mixtures might yield less
accurate approximation. Moreover, solely relying on the learned
distribution for importance sampling is an unstable strategy, poten-
tially introducing variance or even bias [Owen and Zhou 2000]. To
address this, we introduce a learnable multiple importance sampling
(MIS) method. Our approach is based on the single-sample balance
heuristic [Veach and Guibas 1995b], with the following MIS PDF:

𝑝 (𝜈 | 𝑥) = 𝑐 (𝑥)𝑝g (𝜈 | 𝑥) + (1 − 𝑐 (𝑥))𝑝u (𝜈 | 𝑥), (15)

where 𝑐 (𝑥) is the learnable selection probability, decoded from neu-
ral field output (Tab. 1). Following Müller et al. [2019], our method
learns 𝑐 (𝑥) with the following loss function:

𝐿 = 𝑒𝐷KL (𝑝t ∥ 𝑝) + (1 − 𝑒)𝐷KL (𝑝t ∥ 𝑝g), (16)

where 𝑒 is a fixed fraction that we set to 0.2. The single-sample
Monte Carlo estimator for ∇𝑐𝐿 for back-propagation is:

⟨∇𝑐𝐿⟩ = −
𝑒𝑝t (𝜈) (𝑝g (𝜈 | 𝑥) − 𝑝u (𝜈 | 𝑥))

𝑝2 (𝜈 | 𝑥)
. (17)

We find that performing our learnable MIS in combination with
uniform directional sampling is sufficient to achieve excellent per-
formance, as demonstrated in Section 6.3.3. Currently, there are no
alternative importance sampling distributions for the recursive term
of WoSt. We anticipate that if such distributions are developed, they
could be integrated with our method using this approach. We refer
to Section 7 for further discussion.

5 Implementation Details

5.1 Wavefront-style Monte Carlo PDE Solver
Our guiding-based method (see Section 4.2) consists of neural field
inference and training, which benefits from batched input for paral-
lelization. A common strategy in rendering for efficient batching is
the wavefront-style architecture [Laine et al. 2013], where rays are
generated and processed in batches. In light of this, we implement
a wavefront-style Monte Carlo PDE solver on GPU.

As illustrated in Fig. 5, at each step of WoSt, our wavefront-style
solver is divided into three stages:

(1) Logic Stage: The distances to the nearest Dirichlet boundary
and the Neumann silhouette are queried to compute the ball
radius 𝑟 (see Section 3.2). Walks are then partitioned based
on whether they fall within the 𝜖-shell.
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(2) Evaluation Stage: This stage resembles the Material Stage
in wavefront-style renderers. For walks inside the 𝜖-shell,
contributions are evaluated on the nearest Dirichlet boundary.
For walks outside the 𝜖-shell, contributions from source and
Neumann boundaries are evaluated.

(3) Walk Stage: Analogous to the Ray Cast Stage in rendering, this
stage samples the next walk location and updates throughput
accordingly.

As each stage consists of multiple GPU kernels, we use a Structure-
of-Arrays (SoA) memory layout to transfer data between kernels
and employ thread-safe queues to manage tasks for each kernel.

5.2 Network Design and Implementation
Neural Field Architecture. To effectively capture the spatial varia-

tion of the space-conditioned guiding distribution, we use a hybrid
architecture combining learnable spatial embeddings and a small
MLP to encode the parametric mixtures. We define 𝐿 embedding
grids𝐺𝑙 , where 𝑙 = 1, 2, . . . , 𝐿, to form a multi-resolution representa-
tion. Each grid spans the 𝑑-dimensional space of the problem with
a spatial resolution of 𝐷𝑑

𝑙
. A learnable embedding vector 𝜔 ∈ R𝐹 is

associated at each lattice point of 𝐺𝑙 . To retrieve the spatial embed-
ding for a point 𝑥 , we perform bi-linear interpolation at neighboring
lattice points for each resolution, and concatenate the resulting em-
bedding vectors to form the full embedding 𝐺 (𝑥):

𝐺 (𝑥 | Φ) =
𝐿
⊕
𝑙=1

bilinear (𝑥,𝑉𝑙 [𝑥]) , 𝐺 : R𝑑 → R𝐿×𝐹 (𝑑 = 2, 3),
(18)

where 𝑉𝑙 [𝑥] is the embedding vectors at the corners of the cell
enclosing 𝑥 within𝐺𝑙 , and ⊕ is the concatenation operation.𝐺 (𝑥) is
subsequently mapped by an MLP with 3 layers, each containing 64
neurons. Trainable parameters Φ in Eq. 10 consist of the learnable
spatial embeddings and MLP weights. We implement the neural
field based on tiny-cuda-nn [Müller 2021], adopting DenseGrid as
the encoding method of the point coordinates. We employ ReLU as
the activation function of the MLP, and the output is normalized by
mapping in Tab. 1, producing Θ̂(𝑥) in Eq. 10 and 𝑐 (𝑥) in Eq. 15. We
refer to Appendix D for detailed configurations of the neural field.

Online Training Scheme. Similar to Monte Carlo rendering, walks
are evaluated in batches. Each batch consists of one entire walk per
evaluation point. Once all walks in a batch are completed, a training
stage updates the neural field using the information gathered. The
updated neural field is then used to sample the next batch. Once the
walks per point (wpp) reaches a certain threshold, typically 256 wpp,
the guiding distribution converges. At this time, we terminate the
training process and use the neural field exclusively for inference,
further improving performance.

System Integration. As shown in Fig. 5, we insert the neural field
inference stage before the walk stage and integrate the neural field
training stage at the end of each walk loop. Our neural field and the
WoSt integrator operate on separate CUDA streams, allowing the
network inference and the evaluation stages to execute in parallel
within the step loop. This approach maximizes the batch size during
inference and training, avoiding the inefficiencies associated with
single-sample inference or training.

Preparation Logic
Stage

Evaluate
Dirichlet

Contributions

Walk
Stage

Evaluate
Source & Neumann

Contributions

Neural
Field

Training

Step LoopWalk Loop

Neural
Field

Inference

Fig. 5. Illustration of our wavefront-style Monte Carlo PDE solver including
neural field inference and training stages.

5.3 Geometric and SourceQueries
To demonstrate the practicality of our method, it is essential to
implement a system with strong performance. The performance
bottleneck of Monte Carlo PDE solvers typically lies in geometric
queries. The authors of WoSt provide Zombie [Sawhney and Miller
2023] as the algorithm implementation and FCPW [Sawhney 2021] for
geometric queries. However, Zombie is a CPU-only implementation,
and although FCPW offers GPU support via Slang [He et al. 2018],
integrating Slang with tiny-cuda-nn presents significant challenges.

To address this, we develop a CUDA-based geometric and source
query library. For geometric queries, we reference the implemen-
tation of WoBToolbox [Sugimoto et al. 2023] and create a compre-
hensive query library for WoSt using a linear BVH [Karras 2012].
While Zombie uses a dense grid for source queries in 2D, which is
memory inefficient if applied in 3D, we leverage NanoVDB [Museth
2021], a widely adopted GPU-based library for sparse volumetric
storage and efficient source queries in 2D and 3D.

6 Results and Discussion
Since we perform validation on visualization tasks and the exper-
imental results exhibit large variations in scale, we employ the
relative mean squared error (relMSE) as our quantitative metric. All
experiments are performed on an AMD EPYC 9754 128-Core Pro-
cessor with an RTX 4090D GPU. We set the hyperparameter 𝐾 = 8
except for Section 6.3.1. We refer to Appendix E for the complete
quantitative results at 1024 wpp of all experiments.

Since our method is the first importance sampling approach tar-
geting the recursive term of WoSt, we find it reasonable to validate
its effectiveness by comparing with the original WoSt. In Appendix
C, we provide additional comparisons with some existing variance
reduction methods [Li et al. 2023; Qi et al. 2022].

6.1 Comparison with the Original WoSt
For a fair equal-time comparison, we implement both our method
and the original WoSt on the same system, and disable other sam-
pling techniques such as control variates, adaptive sampling, and
stratified sampling. Russian roulette is enabled only when the walk
length exceeds 128 to prevent infinite walks in scenarios involving
Neumann boundaries.
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All experiments in this section are conducted with an evaluation
grid of 1024×1024, running 1024 walks per point (wpp). Our ap-
proach does not involve pretraining and uses all samples to form
the final result, ensuring no additional samples are required com-
pared to the baseline.

6.1.1 3D Geometry. We adopt solving on slices [Sawhney and
Crane 2020, Section 5.2] as the visualization method. For the dataset,
following the experimental design of Li et al. [2023], we create six 3D
problems to compare performance on Dirichlet boundaries (Fig. 7,
columns 1–2), source (column 3), Neumann boundaries (columns
4–5), and problems involving signed values (column 6).

Qualitative and quantitative results are presented in Fig. 8 and
Fig. 9, while Fig. 10 and Fig. 11 illustrate the relMSE as a function of
wpp and as a function of time, resp.The results show that ourmethod
outperforms the original WoSt both qualitatively and quantitatively
in all problems. Although our method incurs some performance
costs, requiring longer runtimes at the same wpp, the results under
equal time (Fig. 11) demonstrate that the variance reduction effect
of our method compensates for the runtime overhead.

6.1.2 2D Diffusion Curves. We use the diffusion curves [Orzan et al.
2008] as our 2D dataset, which employs Dirichlet boundaries to fill
colors in vector graphics. Neumann boundaries are added at the
bounding box to form closed domains. We select two representative
problems: Fille and Ladybug. These problems exhibit distinct char-
acteristics: Fille has more pronounced light–dark variations; while
Ladybug features smoother variations, providing a problem more
favorable for the baseline.

We report the qualitative and quantitative results in Fig. 12 (equal-
sample) and Fig. 13 (equal-time). For the Ladybug problem, initially,
uniform directional sampling better matches the problem’s smooth-
ness compared to the initialization of the guiding distribution. The
learnable selection probability ensures that, in the early stages of
training, unsuitable guiding distributions do not significantly harm
the sampling.

6.2 Evaluation
6.2.1 Training Batch Size. Our method uses a fraction of batches
for training (see Section 5.2). To assess the impact of training batch
size, we vary the training batch sizes to 64, 128, 256, and 512 wpp,
and compare their relMSE and runtime at 1024 wpp. The rest of
the experimental setup follows Section 6.1. Fig. 14 indicates that
the training steps have a significant impact on runtime, primarily
because training steps are blocking (Fig. 5). Besides, our model
converges relatively quickly, with the performance improvement
from 128 wpp to 256 wpp being smaller than that from 64 wpp to
128 wpp. Therefore, using 256 wpp as the training batch size proves
to be a reasonable choice.

6.2.2 Runtime Breakdown. We measure the time consumption of
training, inference, system overhead, and the original WoSt logic
across all problems at 1024 wpp. The results are shown in Fig. 6.
The results demonstrate that our method incurs low time overhead,
and has substantial room for further system-level optimization.

Training Inference System Overhead WoSt

…… … … … … … … …

Fig. 6. Runtime breakdown. The runtime of each execution stage is normal-
ized by the total execution time. Training and Inference refer to the total
time spent on the forward and backward passes of the neural network, resp.
System Overhead represents the additional time spent due to synchroniza-
tion operations and data structure manipulations introduced by integrating
the neural network. WoSt denotes the time consumed by the original logic
of WoSt. On average, our method incurs a 13% runtime overhead.

6.3 Ablation
6.3.1 Number of vMF Components in the Mixture Model. We set the
number of vMF components 𝐾 , to 4, 8, and 16, and compare their
relMSE and runtime at 1024 wpp. As shown in Fig. 15, increasing
the number of vMF components from 4 to 8 results in a significant
improvement. However, further increasing K to 16 does not provide
noticeable benefits and often leads to increased runtime.

6.3.2 Sample Reflection at Neumann Boundaries. We qualitatively
evaluate results with or without reflecting samples at Neumann
boundaries at 1024 wpp in Fig. 16. The experiment shows that the
method without reflection results in worse variance around the Neu-
mann boundary than the original WoSt, while introducing reflection
significantly reduces the variance.

6.3.3 Multiple Importance Sampling (MIS) with Learnable Selection
Probabilities. We conduct experiments on problems in Section 6.1,
with the same setup except for different sampling configurations:
uniform directional sampling only (selection probabilities 𝑐 (𝑥) ≡ 0),
fixed MIS selection probability (𝑐 (𝑥) ≡ 0.5), guided sampling only
(𝑐 (𝑥) ≡ 1), and our learnable MIS (𝑐 (𝑥) is decoded from the neural
field). We report the results in Tab. 2. The results show that our
learnable MIS strategy achieves the best performance.

Table 2. Quantitative results (relMSE↓) of the ablation study on MIS with
learnable selection probabilities.

Problem Uniform Only Fixed 𝑐 (𝑥) ≡ 0.5 Guiding Only Ours

Bob 0.00385 0.00181 0.00136 0.00098
Bunny 0.01511 0.00690 0.00591 0.00564
Dragon 0.00353 0.00158 0.00135 0.00088
Gear 0.00153 0.00085 0.00075 0.00072
Bottle 0.00459 0.00305 0.00288 0.00274
Fille 0.00523 0.00210 0.00241 0.00208
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7 Limitations and Future Work
Positivization. Our method effectively reduces shape variance;

however, for real-valued integrands, we cannot eliminate sign vari-
ance with a positive-valued PDF [Owen and Zhou 2000], as shown
in Fig. 17. While recent differentiable rendering research [Belhe
et al. 2024; Fan et al. 2024; Zeltner et al. 2021] has explored similar
problems, we believe they are inapplicable toWoSt. Besides, existing
Monte Carlo methods for PDE lack consideration of positivization,
we therefore regard this issue as beyond our current scope and defer
it to future work.

Delta Function. Our method alone cannot handle delta boundaries
or source. We anticipate that combining our method with reverse
walk splatting [Qi et al. 2022], or developing an analogy to next
event estimation [Immel et al. 1986; Kajiya 1986] and integrating it
via multiple importance sampling, could address this issue.

More Estimators. Weomit discussions on Robin boundaries [Miller
et al. 2024b], Kelvin-transformed domains [Nabizadeh et al. 2021]
and other PDEs [Sawhney et al. 2022]. However, we believe that
extending our method to these cases should not pose significant
challenges. Additionally, there should also be a guiding method for
walk on boundary [Sugimoto et al. 2023]. For the inverse PDE esti-
mators, drawing from differentiable rendering, it is also expected to
require different guiding strategies [Fan et al. 2024].

Importance Sampling Other Terms. Our method performs impor-
tance sampling on the recursive term. For the Neumann contribution
term, there is already efficient sampling method based on SNCH
trees [Sawhney et al. 2023]. For the source contribution term, using
a certain form of light trees [Conty Estevez and Kulla 2018; Lin
and Yuksel 2020] may be a good choice. Based on our framework,
we may also guide the source sampling using a directional vMF
distribution and a radial Beta distribution.

Combination with Other Variance Reduction Methods. Our method
is theoretically orthogonal to existing methods. Integrating our
method with existing approaches holds the potential to further
reduce the variance of WoSt.

8 Conclusion
We propose a guiding-based method to importance sample the recur-
sive term of the walk on stars (WoSt) estimator, drawing connections
between Monte Carlo PDE solvers and Monte Carlo rendering. We
approximate the directional distribution of the recursive term of
WoSt by fitting a guiding distribution, parameterized by a neural
field, to observations from previous walks. This distribution is then
used to guide subsequent walks with improved sampling efficiency.
A sample reflection technique is introduced to better shape the guid-
ing distribution to align with the target distribution at Neumann
boundaries. Additionally, the learnable selection probabilities adapts
the balance between the uniform directional sampling and guiding
to the local properties of the solution field, further reducing vari-
ance. Experiments under equal time and equal sample settings show
that our method effectively reduces the variance with relatively low
overhead. The expressive guiding distribution improves sampling
efficiency, particularly at positions where the solution field exhibits

higher frequency. We anticipate further advancements in variance
reduction for Monte Carlo PDE solvers and believe rendering tech-
niques will have broader applications across other fields.
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Bob Dragon Bunny Gear
w/ non-zero Neumann boundary

Bole Spot
w/ negative boundary value

Dirichlet boundarySlice plane Neumann boundary Source

Fig. 7. Dataset for our 3D experiments. We adopt solving on slices [Sawhney and Crane 2020, Section 5.2] as the visualization method.

Original WoSt Ours Reference Original WoSt Ours Reference Original WoSt Ours Reference

Bob relMSE0.001930.00827 relMSE0.011100.03070

relMSE0.005400.00930

relMSE0.001760.00762

relMSE0.001450.00311 relMSE9.8699016.0181

Dragon

BoleGear Spot

Bunny

Neg.

Pos.

Fig. 8. Equal-sample qualitative results of our 3D experiments at 512 wpp. We follow Sawhney and Crane [2020, Fig. 6], using grayscale images to visualize the
solution for positive-only results. Since WoSt typically exhibits variance as uniform salt-and-pepper noise [Sawhney et al. 2023, Section 4], we zoom in on
representative regions for visualization. We report relMSE at 512 wpp for each problem below the corresponding images.

Original WoSt Ours Reference Original WoSt Ours Reference Original WoSt Ours Reference

Bob (205s) relMSE0.001400.00517 relMSE0.010970.02442

relMSE0.003340.00474

relMSE0.001630.00627

relMSE0.001330.00260 relMSE5.876267.95612

Dragon (284s)

Bole (680s)Gear (328s) Spot (102s)

Bunny (534s)

Neg.

Pos.

Fig. 9. Equal-time qualitative results of our 3D experiments. We report wall-time results for all 3D problems at their respective given runtime.

SpotBob Dragon Bunny Gear Bole

Fig. 10. relMSE plotted as a function of wpp of our 3D experiments. Under the condition of equal wpp, our method comprehensively surpasses the original
WoSt in 3D problems. In the best scenario, it achieves more than a 4× reduction in variance, while in problems with relatively uniform solution distributions, it
still delivers approximately a 2× improvement.
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SpotBob Dragon Bunny Gear Bole

Fig. 11. relMSE plotted as a function of time of our 3D experiments. Despite the performance overhead, our method still maintains an advantage in equal-time
comparisons across all 3D problems.

Fille

Orig. WoSt Ours Reference Orig. WoSt Ours Reference

Ladybug 0.00028 0.00020 relMSE0.02104 0.00863 relMSE

0.00

0.01

Fig. 12. Equal-sample qualitative and quantitative results of the 2D diffusion curve experiments. We present the rendering results of two examples at 256 wpp
and report their relMSE. Due to the rapid convergence of Ladybug, the noise of both methods is nearly imperceptible. To facilitate comparison, we also present
false-color maps of the per-pixel relative squared error.

Fille (46s)

Orig. WoSt Ours Reference Orig. WoSt Ours Reference

Ladybug (109s) 0.00014 0.00010 relMSE0.02791 0.01543 relMSE

0.00

0.01

Fig. 13. Equal-time qualitative and quantitative results of the 2D diffusion curve experiments.

Fig. 14. The evaluation experiment results for training batch size. We nor-
malize the results by the data with the batch size of 64.

Fig. 15. The ablation experiment results for the number of vMFs. We nor-
malize the results by the data with the number of 4.

Patch relMSE

Overall relMSE

0.00101 0.00176 0.00095

0.00061 0.00055 0.00036

Reference Original WoSt w/o Reflection w/ Reflection

Fig. 16. Ablation experiment results for the sample reflection at Neumann
boundaries. We show qualitative results of the patch near a Neumann
boundary. We also report their patch relMSE and overall relMSE, resp.

RSE
(WoSt)

RSE
(Ours)

Sign of Solution

+

Spot

Neg.

Pos.

Low

High

Fig. 17. Limitation: Our method effectively reduces shape variance, but like
the baseline original WoSt, it cannot reduce sign variance.
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