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Figure 1: Rendering results using the original H2MC and with a roughening scheme. The roughening scheme modifies the target distribution
of H2MC by roughening the specular BRDF by a factor of ×1.25, yet achieves unbiased rendering to the same results as the original scene.
Our theory can estimate the expected Mean Squared Error (MSE) of the rendering with increasing samples per pixel (spp), as shown by
the blue dashed lines, which match with the actual MSE depicted by the solid curves. To obtain a reliable measure of the actual MSE, the
MCMC algorithm is run several times to calculate the average MSE.

Abstract
We present a theoretical framework for estimating the convergence of Markov-Chain Monte Carlo (MCMC) rendering algo-
rithms. Our theory considers both the variance and the correlation between samples, allowing for quantitative analyses of the
convergence properties of MCMC estimators. With our theoretical framework, we devise a Monte Carlo (MC) algorithm capa-
ble of accurately estimating the expected MSE of an MCMC rendering algorithm. By adopting an efficient rejection sampling
scheme, our MC-based MSE estimator yields a lower standard deviation compared to directly measuring the MSE by running
the MCMC rendering algorithm multiple times. Moreover, we demonstrate that modifying the target distribution of the Markov
chain by roughening the specular BRDF might lead to faster convergence on some scenarios. This finding suggests that our
estimator can serve as a potential guide for selecting the target distribution.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Markov Chain Monte Carlo (MCMC) is a powerful tool for draw-
ing samples from complex distributions. In computer graphics,
MCMC is widely used in physics-based rendering. Since its ini-
tial introduction by [VG97], most research has focused on devel-
oping improved sample mutation schemes to sample critical light
paths more effectively. Specific mutation schemes have been intro-
duced to enhance sampling over challenging specular paths [CA00,

JM12, KHD14, HKD15], complex geometries [OHHD18], lever-
aging higher order derivatives [LLR∗15], momentum and caches
[LZBG20]. The combination of these mutation schemes has also
been extensively studied, with adaptively multiplexing [HKD14]
or combining path space mutation and primary space [KSKAC02]
mutations [OKH∗17, Pan17, BJNJ17, BJ19]. In practice, MCMC
rendering algorithms can sample “difficult” light paths efficiently
by: (i) starting with a potentially high-contribution “seed” path;
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and (ii) iteratively mutating this path to explore correlated “nearby”
paths.

To analyze the convergence of MCMC rendering algorithms,
early studies [APSS01] indicate that the convergence rate of
MCMC rendering is Θ(1/N), even with correlated samples. Fur-
ther, these correlations can negatively impact the convergence
speed of MCMC algorithms [KSKAC02] and lead to non-uniform
convergence rates. Although many empirical studies have explored
how sample correlation affects the efficiency of MCMC rendering,
theoretical analysis and efficient measurement of the convergence
of MCMC rendering algorithms have remained largely unexplored
in computer graphics.

In this paper, we present a theoretical analysis demonstrating
that the convergence speed of an MCMC rendering algorithm is
determined by two factors: the variance of the steady-state distri-
bution and the correlation between the samples. We also design a
Monte Carlo method to estimate both the variance and the corre-
lation effects of a given MCMC rendering process, allowing effi-
cient computation of its expected MSE (at a given sampling rate).
Additionally, we develop a rejection sampling scheme capable of
significantly improving the performance of our estimator.

We validate our theory by predicting the convergence of both
PSSMLT [KSKAC02] and H2MC [LLR∗15] algorithms on three
typical scenes. With an equal computation budget, our MSE esti-
mator yields lower standard deviation compared to directly mea-
suring the MSE by running the MCMC rendering algorithm multi-
ple times. Figure 1 illustrates a plot of the predicted MSE changing
with increasing samples, compared to the actual measured MSE of
the MCMC rendering. The actual MSE of the MCMC rendering
is averaged from multiple independent MCMC renderings to elim-
inate randomness. The prediction of MSE aligns closely with the
actual measurements.

Concretely, our contributions include:

• We present a theoretical framework for estimating the conver-
gence of MCMC rendering algorithms, considering both the
variance and the correlation between samples.

• We devise a Monte Carlo algorithm with rejection sampling,
capable of accurately and efficiently estimating the MSE of an
MCMC algorithm at a given sampling rate.

• We demonstrate that using a Markov chain’s stationary distribu-
tion proportional to the measurement contribution of light paths
does not always yield the fastest convergence. For example,
on scenes with complex light-transport effects, a well-chosen
roughening scheme can enhance convergence speed.

2. Related Works

MCMC rendering. Markov Chain Monte Carlo (MCMC) refers
to a class of algorithms that generate samples from a target distribu-
tion by constructing a Markov chain that has the target distribution
as its steady-state distribution [GRS95, RCC99]. The Metropolis-
Hastings algorithm [MRR∗53, Has70] is a widely used MCMC
algorithm, which uses a proposal distribution and an acceptance
probability to create a Markov chain that converges to the target
distribution.

In physically based rendering, MCMC algorithms are employed
to generate light paths that contribute to the final image [ŠK20].
The Metropolis Light Transport (MLT) algorithm [VG97] is an
MCMC algorithm that generates light paths by modifying exist-
ing paths, which operates in path space. To simplify the algorithm,
Kelemen et al. [KSKAC02] proposed MCMC algorithms that op-
erate in primary sample space, making the proposal independent of
specific rendering effects.

Various path proposal strategies have been introduced to ex-
plore challenging light paths. The first derivatives of the half-
vector of a light path are used to guide the path proposal to sam-
ple difficult specular paths [CA00, JM12, KHD14, HKD15]. Li
et al. [LLR∗15] leveraged both first and second order derivatives
for a Hamiltonian Monte-Carlo inspired path proposal scheme.
Langevin Monte Carlo [LZBG20] incorporates adaptive precon-
ditioning and momentum schemes that achieve efficient mutation
with just first-order derivatives. The image domain spatial gradi-
ent can also be used to guide the MCMC sampling [LKL∗13].
Geometry-aware MLT [OHHD18] improves sampling over com-
plex visibility cases by adapting step sizes according to scene ge-
ometry. By efficiently sampling ensembles of transport paths, En-
semble MLT [BRSMD21] introduced a series of transition kernels
that eliminate the need for world space caching.

Different sampling schemes can be adaptively multiplexed
[HKD14] to enhance performance. Additionally, mutations in the
path space and primary sample space can be combined to leverage
the advantages of both spaces [OKH∗17, Pan17, BJNJ17]. Finding
a proper MLT algorithm for a specific scene has also been inves-
tigated [BJ19]. All those MCMC rendering algorithms aim to im-
prove mutation strategies for more efficient light transport explo-
ration. Our theory is developed to analyze and estimate their con-
vergence properties. While most algorithms use path energy contri-
bution as the target distribution, our theory suggests that the target
distribution is also a new avenue for future explorations.

Customize stationary distribution. In the original MLT algo-
rithm, Veach [Vea98] discussed the potential choices for the target
distribution function and proposed a two-stage MLT algorithm to
equalize the sampling rate over pixels by normalizing the target dis-
tribution, thus reducing relative error. Hoberock and Hart [HH10]
extended this concept into a multi-stage MLT, rendering the image
in multiple recursive stages. Each stage employs a refined normal-
ization based on the accumulated samples from previous stages.
Recently, Zirr et al. [ZD20] introduced an analytical approach to
stratification and adaptive sampling in MCMC, enabling adaptive
sampling that solely uses forward path construction.

Markov chains with different customized target distributions are
also widely used in replica exchange MCMC algorithms [SW86],
also known as parallel tempering, and were introduced to MCMC
rendering by Kitaoka et al. [KKK09] The parallel tempering frame-
work allows for the use of multiple Markov chains with different
target distributions, exploring the sample space more efficiently.
Different levels of relaxation constants are used by Otsu et al.
[OYH∗13] to create multiple Markov chains; path regularization
schemes like roughening the specular BRDFs [KD13] can also
be used to create higher temperature chains [ŠK16]. Šik et al.
[ŠOHK16] also use two Markov chains, one with a regular path
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contribution target function and another with a path visibility tar-
get function in their MCMC sampler. Replica exchange can also be
used in the image space [GWH20] while keeping the target distri-
bution unchanged.

Existing works that use customized target distributions either fo-
cused on optimizing for a different goal like reducing relative er-
ror [HH10, ZD20] or combined with the replica exchange scheme
[ŠOHK16,ŠK16] aiming to provide better exploration performance
among multiple Markov chains with different steady-state distribu-
tions. Alternating target distribution can also be utilized for effec-
tive photon tracing [HJ11]. In our application section, we show that
even for the vanilla single-chain MCMC scenario, customizing the
target distribution can lead to a better convergence rate measured by
MSE. Additionally, our analysis and convergence estimation can be
used to predict the performance of the choice of target distributions,
which could serve as a better tool for designing target distributions
in the future.

Convergence analysis for MCMC rendering. In statistical stud-
ies, theoretical analysis of MCMC algorithms shows that their
convergence rate is determined by sample correlation properties
[Ber04]. A majority of works focus on estimating the Effective
Sample Size (ESS) to assess the convergence rate of sequential
Monte Carlo (SMC) algorithms [DDFG∗01]. The ESS is defined
as the number of independent samples that would provide the same
variance as the correlated samples. The ESS can be used to esti-
mate the convergence rate of MCMC algorithms by comparing the
variance of the samples to the variance of independent samples.
However, how to effectively estimate or approximate the ESS for
a given MCMC algorithm is still an active research topic in statis-
tics [MEL17, VGS∗21, FCS22].

In computer graphics, early studies [APSS01] provided loose
bounds on sample covariance, showing that the convergence rate
of MCMC rendering is Θ(1/N) even in the presence of sample
correlation. However, it has been observed that correlation signif-
icantly impacts the convergence speed of MCMC rendering algo-
rithms [KSKAC02]. Unlike previous works offering either empiri-
cal analysis or loose bounds, our theory accurately estimates how
sample correlation affects the convergence rate and successfully
predicts the convergence rates of existing algorithms.

3. Preliminaries

In this section, we will first revisit some preliminaries in Markov
Chain Monte Carlo. Table 1 summarizes the symbols and notations
commonly used in this paper.

Physically based rendering with Markov Chain Monte Carlo
(MCMC) can be formulated as computing a path integral of the
measurement contribution function f (x) over discretized pixels j:

I j =
∫

Ω

h j(x) f (x)dx, (1)

where Ω is the full path space, and the image reconstruction kernel
h j(x) determines which path contributes to the corresponding pixel
j.

Given a target distribution g(x), also defined on the path space Ω,

Notation Description
Ω The state space of a Markov process

x, f (x),g(x) State x ∈Ω, its contribution, distribution function
h j(x), f j(x) Reconstruction filter of pixel j, f j(x) := h j(x) f (x)

I j Reference value of pixel j. I j = ∑x∈Ω f j(x)dx
w j(x) Splat value w j(x) =

f j(x)
g(x) .

|w j⟩ , |g⟩ Vector consists of w j(x),g(x) for all x ∈Ω

M Transition matrix
Mk(y,x) k-step transition probability (x→ y)

G The limit matrix of Mk. G := [|g⟩ , |g⟩ , ..., |g⟩]
Î j Estimate of pixel j. Î j =

1
n ∑

n
i=1 w j(xi)

Table 1: Important notations used throughout the derivation

we can design an MCMC process that produces a series of samples
x1, ...,xn where the final distribution follows the target distribution
g(x). With this, we can define a Splat Weight Function:

w j(x) =
h j(x) f (x)

g(x)
, (2)

such that the image integral in Eq.(1) can be computed as the esti-
mate of the weights of all the samples:

I j =
∫

Ω

h j(x) f (x)dx =
∫

Ω

w j(x)g(x)dx = lim
n→+∞

E(w j(xn)), (3)

where the estimate of the integral is asymptotically unbiased and
converges when the number of samples reaches infinity. Note that
the target distribution g(x) does not necessarily have to be the same
as f (x); any g(x) that meets the condition f (x) ̸= 0→ g(x) > 0 is
suitable, as long as a proper splat weight function w j(x) is applied,
the MCMC estimator w j(xi) is still unbiased.

In primary-sample space (PSS) MCMC, the state space of the
Markov process is a hypercube containing vectors of random num-
bers that are mapped to light paths via a predetermined path sam-
pling procedure. The only difference is the definition of the mea-
surement contribution function, where for the path space samples x,
f (x) is the radiance contribution of the path, while for the primary
space samples x, f (x) is the radiance divided by the Jacobian of x
that measures the projection differences between the primary space
and the path space, and the PSS-MCMC rendering can be written
as:

I j =
∫

h j(x(u)) f (x(u))J(u)du, (4)

where x(u) maps from primary-sample space u to a path, and J(u)
is the Jacobian factor. Notably, J(u) is the reciprocal of the prob-
ability density function pdf(x), i.e., J(u) = 1

pdf(x(u)) , reflecting the
change of variables from path space to primary-sample space. For
simplification, the following derivation will be based on a Markov
process defined in the primary-sample space, but the same theory
can be applied to the path space as well. In later derivations, we
will use x and f (x) to denote a sample and its measurement con-
tribution function, assuming all terms like the Jacobian are already
considered.
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4. Theoretical Analysis

In this section, we will begin with a theoretical analysis of the con-
vergence of MCMC (Sec. 4.1), followed by the development of a
Monte Carlo estimator for calculating the expected mean squared
error (MSE) of an MCMC rendering algorithm (Sec. 4.2).

4.1. Variance of MCMC based integration

As expressed in Eq. (3), a valid MCMC estimator is asymptoti-
cally unbiased and converges to the ground truth for any valid g(x)
when the length of the Markov chain reaches infinity. A g(x) is
valid when it maps all the non-zero region of f (x) into a positive
value, formally g(x) should satisfy f (x) ̸= 0→ g(x) > 0. To ana-
lyze the convergence of an MCMC estimator, we define nSE j as
the product of the number of all the samples n and the square error
of pixel j:

nSE j = n(Î j− I j)
2, (5)

where Î j is the MCMC estimated value of I j (Tab. 1). Then, for the
whole image, nMSE will be the average of the nSE j across all the
pixels. In the remaining section, we focus on one pixel nSE j which
can be easily applied to the full image to get nMSE.

We will show that for a valid MCMC estimator, the expectation
of nSE j converges to a constant determined by the variance and
correlation of the samples. This constant also measures how fast
the MCMC estimator converges to the ground truth. Specifically,
we express the expected value of nSE j by adopting Eq. (5) and the
definition of Î j , we have:

E[nSE j] = E

[
n
(

∑
n
s=1 w j(xs)

n
− I j

)2
]

(6)

= E

[(
∑

n
s=1(w j(xs)− I j)

)2

n

]
. (7)

By expanding the sum of squares, we can rewrite this expression
as:

E[nSE j] =
1
n

n

∑
s=1

n

∑
t=1

E[(w j(xs)− I j)(w j(xt)− I j)] (8)

which can be decomposed into:

E[nSE j] =
1
n

n

∑
s=1

Cov[w j(xs),w j(xs)]

+
2
n

n

∑
s=1

n−s

∑
k=1

Cov[w j(xs),w j(xs+k)],

(9)

where the first term, Cov(w j(x),w j(x)), is the variance of the dis-
tribution of samples, which is the variance of the target distri-
bution, and we denote it as Var(w j(x)). The latter term is the
correlation between these samples. For simplicity, we introduce
Rk = Cov(w j(xs),w j(xs+k)) to represent the correlation between
samples from the stationary distribution that are k steps apart. Then,

Algorithm 1 Estimation of L j

Set T and kmax
L̂ j← 0
for i = 1,2, ..., T do

Sample x0 ∼ u(x)

S← h2
j (x0) f 2(x0)

g(x0)u(x0)
− I2

j
for k = 1,2, ..., kmax do

Sample xk ∼M(x|xk−1)

S +=
2h j(x0)h j(xk) f (x0) f (xk)

g(xk)u(x0)
−2I2

j
end for
L̂ j += S

T
end for
Return L̂ j

Eq. (9) can be simplified into:

E[nSE j] = Var(w j(x))︸ ︷︷ ︸
Variance Term

+ 2
n

∑
k=1

n− k
n

Rk︸ ︷︷ ︸
Covariance Term

(10)

= Var(w j(x))+2
n

∑
k=1

Rk−
2
n

n

∑
k=1

kRk. (11)

This indicates that the convergence of SE j is jointly determined by
the variance of the target distribution and the covariance between
the samples. In the appendix, we demonstrate that Rk decays geo-
metrically as k increases. Consequently, the sum of Rk converges
to a constant. The product kRk forms an Arithmetico-geometric se-
quence whose infinite sum is also convergent. After scaling by 2

n ,
this sum vanishes as n tends to infinity. Therefore, nSE j converges
to a constant L j:

L j := lim
n→+∞

E[nSE j] = Var+2
+∞
∑
k=1

Rk, (12)

where w j(x) is omitted for simplicity. We denote L j as the conver-
gence constant of pixel j. Additionally, with Rk

Var representing the
k-lag correlation of the samples, we can rewrite our conclusion as:

lim
n→+∞

E[nSE j] = Var

(
1+2

+∞
∑
k=1

Rk
Var

)
. (13)

In statistics literature, the term τ = 1+2∑
+∞
k=1

Rk
Var is also called the

autocorrelation term, and n times its reciprocal is usually referred
to as the Efficient Sample Size: ness =

n
τ
. Existing statistical studies

also show that for a valid MCMC estimator, its Monte Carlo stan-
dard error is proportional to 1√

ness
, due to the correlation between

the n samples [DDFG∗01].

4.2. Monte Carlo based convergence estimator

The above analysis reveals the convergence property with L j. How-
ever, for a specific scene and a specific MCMC render, there is no
analytical solution to get L j directly. As a result, we further derive
a Monte Carlo (MC) estimator for the convergence coefficient L j.

The variance term Var(w j(x)) is relatively simple and can be
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expressed as:

Var(w j(x)) =
∫

Ω

h2
j(x) f 2(x)

g(x)
dx− I2

j , (14)

which can be estimated by sampling x0 from a uniform distribution
u(x) and computing the MC estimates of its variance.

To estimate the covariance term, we start by estimating the k-
lag correlation Rk. Based on the definition, if we have a k-length
Markov chain, the correlation between its first sample x0 and the
last sample x can be expressed as:

Rk =
∫

Ω

∫
Ω

h j(x0) f (x0)h j(xk) f (xk)

g(x0)
Mk(xk,x0)dx0 dxk− I2

j , (15)

where Mk(xk,x0) is the k-step transition probability (x0→ xk). For
each given k, we can sample x0 from a uniform distribution u(x)
in the primary space and compute the k-order correlated sample
xk following the Markov process. Each sampled k-length Markov
chain can now be regarded as an MC-sample, following the joint
distribution of:

p(x0,xk) = u(x0)M
k(xk,x0),

so that the estimate of Rk can be rewritten as:

E[R̂k] =
∫

Ω

∫
Ω

p(x0,xk)R̂k dx0 dxk = Rk.

Thus, we can compute the MC estimate of Rk based on the sampled
x0, xk, and u(x0) with:

R̂k =
h j(x0) f (x0)h j(xk) f (xk)

g(x0)u(x0)
− I2

j . (16)

where I2
j is the ground truth pixel value. In practice, we run two

independent BDPT renders of the image and compute the product
to get an estimate of the I2

j term.

We then need to compute the sum of an infinite series of Rk to
evaluate the covariance term. In the appendix, we provide proof that
the sum of Rk converges exponentially to a constant as k increases,
and its convergence rate is determined by the eigenvalues of M.
Thus, a higher order Rk will have a diminishing contribution to
the final estimate. In practice, we can take a predefined threshold
kmax without introducing significant estimation bias or use Russian
Roulette to determine k stochastically. The detailed algorithm for
the MC estimator for both the variance and the correlation term
is illustrated in Alg. 1. Note that the k-length Markov chain only
needs to be sampled once for each x0 to compute all Rk with k from
1 to kmax.

In the supplementary material, we will show a simple 1D ex-
ample where the variance and covariance terms can be accurately
predicted by the theory with the analytically solved eigenvectors
and eigenvalues, and show that our MC-estimator can well match
the theoretical prediction.

Rejection sampling. Notice that the primary computational cost
for the MC-estimator in Alg. 1 is evaluating a Markov chain with
k samples starting from every sampled x0. From Eq. (16), we can
observe that every sample in this Markov chain has its contribution
to L j proportional to f (x0). Thus, making x0 ∼ u(x) proportional to

Algorithm 2 Estimation of L with rejection sampling
Set T and kmax
L̂ j← 0
for i = 1,2, ..., T do

Sample x0 ∼ u(x), rx0 ∼ [0,1]
px0 ←

min( f j(x0), fmax)
fmax

if rx0 < px0 then

S← h2
j (x0) f 2(x0)

g(x0)u(x0)
− I2

j
for k = 1,2, ..., kmax do

Sample xk ∼M(x|xk−1)

S +=
2h j(x0)h j(xk) f (x0) f (xk)

g(xk)u(x0)
−2I2

j
end for
L̂ j += S

px0 T
end if

end for
Return L̂ j

f (x) will improve the efficiency of the MC-estimator. As a result,
we adopted a rejection sampling scheme to determine whether we
evaluate the entire Markov chain starting with x0.

Specifically, we first use a uniform sampling in the primary space
to roughly estimate f̂max, the maximum value of f (x). Then for
each sampled x0, we first evaluate f (x0) and reject the sample
with a probability of min(1, f (x0)

fmax
). Although this rejection sam-

pling scheme will waste computation in evaluating f (x0), it saves a
large amount of computation by avoiding evaluating a long Markov
chain which will have little contribution to the estimation of L j due
to the low contribution of the initial path x0. Since the goal of rejec-
tion sampling is to exclude initial samples with low contributions,
which do not need a precise fmax. An underestimated f̂max should
be sufficient. The detailed algorithm for the MC-estimator with re-
jection sampling is described in Alg. 2.

5. Validation

To validate the accuracy and efficiency of our proposed conver-
gence estimator, we compare the expected convergence calculated
with our theory to the actual MSE measured from real MCMC ren-
dering processes.

Accuracy. To test the accuracy of our method, we chose 3 typical
scenes often used in evaluating MCMC rendering algorithms. The
Torus scene features a dominant object with difficult light transport
effects, the Veach Door scene requires the rendering algorithm to
find challenging long paths, and the Breakfast Room scene show-
cases a more generic rendering scenario with balanced light trans-
port types. For the MCMC rendering algorithm, we chose PSSMLT
[KSKAC02] and H2MC [LLR∗15] as two examples, and used our
MC-based convergence estimator following Alg. 2. In practice, un-
less otherwise noted, we used kmax = 4096 and T = 1024spp for
each evaluation.

To measure the actual MSE, we rendered the same image using
different seeds and computed the MSE for each render. We then
averaged the MSE over those different rendering trials to get the
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expected MSE. Fig. 2 illustrates the convergence plot predicted by
our theory and the actual measured MSE. By considering both the
variance and covariance, the prediction of our method matches well
with the actual measured MSE. Predictions using only the variance
term differed significantly from the actual convergence.

For all the experiments, the reference images were rendered with
BDPT using 2Mspp, which guarantees that the rendering results are
fully converged.

Efficiency. We further evaluate the performance of our estima-
tor and compare it to actually running the MCMC renderer. We
tested it on the Breakfast Room scene and evaluated it with both the
PSSMLT and H2MC algorithms. For our MC-based estimator, we
ran it with the same configuration as above; then ran the MCMC
renderer for an equal computation time and measured the MSE by
comparing it to the reference.

Fig. 3 (a) illustrates the predicted nMSE compared to the equal
time computed nMSE using the rendered result of MCMC algo-
rithms. A ground truth nMSE is also provided by running MCMC
rendering for a sufficiently long time and averaging out over 256
renders using different seeds. Due to the non-uniform convergence
properties of MCMC rendering algorithms, we ran the MCMC
render multiple times and plotted multiple curves. The measured
nMSE from the MCMC render suffers from severe variance among
different runs and diverges from the ground truth nMSE. On the
other hand, our prediction already matches the reference with rea-
sonable accuracy.

A conventional way to reduce the variance is by averaging the

PSSMLT H2MC

Torus

Veach Door

Breakfast Room

Figure 2: We validated our MC-based convergence constant esti-
mator on three scenes using two MCMC rendering algorithms. Our
predictions matched the actual measured MSE in all cases, while
predictions using only the variance term significantly differed from
the actual convergence.

Method sppe
te MCMC Ours

(min.) SD RSD SD RSD
H2MC 1024 6.4 3.127 9.2% 0.709 2.1%

PSSMLT 1536 5.1 4.572 12.7% 0.689 1.9%

Table 2: Equal time quantitative evaluation by comparing the stan-
dard deviation (SD) and relative standard deviation (RSD) of the
estimated MSE.

rendered image of multiple independent MCMC runs with differ-
ent seeds and then measuring the MSE. Fig. 3 (b)-(d) demonstrates
results that measure the nMSE with 4,16 and 64 independent runs
and compares them with our prediction, with computation time
listed. Experimental results show that even averaging with 64 in-
dependent MCMC runs, the measured MSE still suffers from non-
uniform convergence. As a result, for each configuration, we also
perform the “multi-run-average” experiment four times and plot
four curves (each curve is already an average of multiple runs) to
show the differences between different experiments. Our method
takes much less computation time while providing an accurate pre-
diction, whereas the conventional method takes much longer. Even
with 64 independent runs, the result nMSE from the conventional
method still shows some bias from the ground truth.

Our algorithm in Fig. 3 (a) takes kmax = 4096, T = 512spp, and
(f) takes kmax = 2048, T = 256spp. All the performance timings are
evaluated on a workstation with a Intel Xeon W-2145 CPU.

As evaluated above, both our method and the “multiple run av-
erage” converge to the same estimation of the MSE. We choose the
standard deviation of the results of both methods as the evaluation
metric for a quantitative assessment, since a lower standard devia-
tion indicates a more stable estimate.

Specifically, we conducted 256 independent MCMC renderings
with a fixed sppe, recording the average rendering time te and cal-
culating the standard deviation and relative standard deviation of
the results’ MSE values. Similarly, we applied our MC-estimator
for 256 runs using the same time budget te with varying numbers
of samples and computed the standard deviation of its estimated
MSEs. As shown in Table 2, our method yields a lower deviation
compared to estimating with “multiple MCMC runs”.

Note that our method also evaluates a MC-estimate of I2, thus
not needing a reference image. However, the MCMC render results
need a separately computed reference image to evaluate the MSE.
In all the above evaluation, our method includes the computation
time of the I2 term, while all the MCMC renders do not include the
BDPT computation time for rendering the reference image.

To analyze the robustness and efficiency of our method, we
first plot the estimated nMSE changes as kmax increases, taking
T = 2048spp to rule out randomness. As illustrated in Fig. 4, the
estimated nMSE converges exponentially as kmax increases, show-
ing that setting a reasonable kmax should be sufficient to guarantee
a good estimate.

We then set kmax = 4096 and plot the estimated nMSE with in-
creasing spp for T . Since the computation of our method is pro-
portional to the spp, the spp can also be regarded as a rough time

© 2025 The Author(s).
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MCMC: 6.4min
Ours: 6.4min

(a) Equal Time

MCMC: 25.6min
Ours: 12.8min

(b) 4 Runs Average

MCMC: 102.4min
Ours: 12.8min

(c) 16 Runs Average

MCMC: 409.6min
Ours: 12.8min

(d) 64 Runs Average

MCMC: 6.4min
Ours: 1.6min

(e) 1/4 Time

MCMC: 5.1min
Ours: 5.1min

MCMC: 20.4min
Ours: 10.2min

MCMC: 81.6min
Ours: 10.2min

MCMC: 326.4min
Ours: 10.2min

MCMC: 5.1min
Ours: 1.3min

Figure 3: Our MC-based estimation (blue curve) provides an accurate estimate of the convergence properties (measured with nMSE) of a
given MCMC rendering algorithm (top-row: H2MC, bottom-row: PSSMLT), which well matches the reference (red curve). With the same
computation time (a), the MCMC rendering algorithm suffers from non-uniform convergence, and the actual MSE varies significantly in
different experiments. Even with much longer computation times, taking averages from multiple independent runs (b)-(d), the MCMC results
still have a gap from the reference, which takes 256 independent runs to average out the non-uniform convergence effects. (e) With only 1/4
of the computation time, our method already makes a reasonable prediction.

Figure 4: Robustness and efficiency analysis of our method, on
H2MC (left) and PSSMLT (right). The top row plots the estimate of
nMSE converges exponentially as kmax increases. The bottom row
plots the estimate of nMSE changes as the sampled spp increases.
We also draw a dashed line to indicate the computation time which
the corresponding MCMC render takes for render a single image.
Note that our method already reaches a stable estimate of nMSE
before MCMC render finishes rendering a single image.

estimate. As a result, we also marked a dashed line to indicate the
time the corresponding MCMC rendering algorithm takes to ren-
der a single image (as the curve shown in Fig. 3(a)). Note that
our method already reaches a stable estimate of nMSE before
the MCMC rendering algorithm finishes rendering a single image,
which still suffers from non-uniform convergence. Due to the na-
ture of MC-estimates, it is possible to progressively increase T and
Kmax in order to attain the desired prediction accuracy.

6. Analyzing the Choices of Stationary Distribution

According to Equation (11), the convergence speed of an MCMC
rendering algorithm is determined by two factors: the variance of
the steady-state distribution and the correlation between the sam-
ples. Both are affected by the choice of the stationary distribution
of the Markov-chain g(x). In fact, the common choice of setting
g(x) ∝ f (x) only minimizes the variance term but introduces sig-
nificant correlation. Existing methods already indicate that alter-
ing the target distribution together with a replica exchange scheme
[OYH∗13, ŠK16, BJ19] can improve the MCMC convergence.

With our efficient convergence estimation, we can predict the
performance of MCMC with different stationary distributions. In
this section, we provide a straightforward roughening scheme that
demonstrates how, for specific light transport effects, appropriately
modifying g(x) in MCMC might achieve better performance, even
without adopting advanced schemes like replica exchange.

Roughening. is a common technique for rendering highly specu-
lar surfaces. It makes sampling difficult specular paths easier by in-
creasing the surface roughness. However, naive roughening can in-
troduce bias. Our theory shows that properly designed roughening
can achieve unbiased rendering by matching the target distribution.
While roughening generally increases variance, it can also reduce
sample correlation, potentially balancing variance and correlation
for faster convergence.

We create a simple roughening scheme by scaling the BRDF’s
roughness with a fixed factor S. For dielectric BSDF, we adjust the
roughness value, and for Phong models, we scale the power factor.
During MCMC rendering, the entire algorithm, including sample
mutation and acceptance computation, works within the modified
scene. When determining the final contribution to each image pixel,
instead of using a fixed value for final pixel contributions, we apply
a splat weight function w j(x) =

h j(x) f (x)
g(x) . To calculate this score,

© 2025 The Author(s).
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n=1 n=4 n=9 n=25 n=100

Figure 5: Our roughening scheme applied to scenes with varying numbers of specular objects.

we determine f (x) for the original scene and g(x) for the modified
scene.

We tested our roughening scheme with three different MCMC
rendering algorithms: PSSMLT [KSKAC02], H2MC [LLR∗15],
and LMC [LZBG20]. Three scenes with complex specular light
transports were selected to evaluate the roughening concept.

Figure 6 presents the rendering results of three algorithms using
the original configuration and two different roughening scales (S =
1.25 and S = 1.5). Additionally, a zoomed-in crop is provided to
illustrate how challenging purely specular paths were sampled. We
also listed the average MSE among those methods measured from
16 independent runs.

We analyze how roughening improves MCMC rendering conver-
gence using our theory, focusing on the Miniatures Orb scene with
the H2MC rendering algorithm. Using our MC-based convergence
estimator, we compute variance and correlation terms, as shown in
Figure 1. The figure indicates strong correlation effects due to spec-
ular light transport, validated by the low acceptance rate of global
mutation proposals. Roughening reduces correlation effects by sim-
plifying specular light transport, though it slightly increases vari-
ance. Overall convergence rates remain higher when roughening is
properly configured. To obtain a robust estimate for this scene, we
use Kmax = 8192, and T = 2048spp, due to the high correlation
of specular paths. With this configuration, our estimation takes 88
minutes, which is still faster than rendering the image with MCMC
(which takes 97 minutes).

We further analyze when roughening is beneficial for MCMC
rendering. As illustrated above, roughening specular paths improve
global exploration, thus benefiting scenes that require extensive ex-
ploration. Figure 5 shows variations of a base scene with different
numbers of specular objects. More specular objects create new dis-
joint path sub-manifolds that need sampling, requiring more global
exploration. As shown in Figure 5, experiment results confirm that
roughening is more beneficial with an increased number of spec-
ular objects. This provides an empirical guideline for choosing
proper roughening for the scene. Note that this idea is a preliminary
application indicating that selecting a target distribution different
from the energy contribution distribution can enhance convergence.
Identifying the optimal target distribution is left for future work.

7. Discussion and Conclusion

Performance over MCMC rendering. Our experimental results
demonstrate that predicting the MC-estimate of nMSE is faster
than having the MCMC rendering algorithm render a single image.
The fundamental reason is that our method is specifically designed
for estimating the nMSE averaged over the full image efficiently,

while the MCMC rendering algorithm is designed to render indi-
vidual pixels of the full image. Our theory and practice show that,
although the sample correlation leads to non-uniform convergence
of MCMC, which is hard to predict, its average performance (on
multiple independent MCMC runs) can still be estimated efficiently
and robustly. We believe our MC-based convergence estimator can
be an effective tool for analyzing the performance of future MCMC
rendering algorithms.

Previous works on altering the stationary distribution. The ma-
jority of previous approaches that modify the stationary distribu-
tion have focused on minimizing the relative error, from early at-
tempts [Vea98] to more recent works [ZD20], since it is clear that
using energy distribution is not optimal. In terms of minimizing the
MSE, using a target distribution proportional to the path contribu-
tion is the most common choice. However, as demonstrated in our
experiments, even with the MSE metric and using a single Markov
chain, this choice is not always optimal. As demonstrated in Sec. 6,
our convergence estimation tool can be used to analyze when differ-
ent target distributions altered by roughening lead to a trade-off be-
tween sample variance and correlations. With such analysis, we can
design different target distributions for various light paths, yield-
ing better convergence with simple single-chain MCMC, without
adopting advanced schemes like [ŠOHK16, BJ19]. This showcases
the potential of target function design in MCMC rendering.

Previous works based on roughening. Roughening is a common
technique in MCMC rendering for improving convergence speed,
but it often introduces bias. To keep the introduced error low while
reducing the variance, a set of path space regularization schemes
has been proposed [KD13, WDH∗21]. With a sufficient number
of samples, the regularization can also be progressively relaxed to
achieve consistent convergence. Roughening can also be used to
create a higher temperature chain in the replica exchange MCMC
[ŠK16], which encourages the exploration of the sample space and
helps the convergence of the original MCMC chain that still uses
the original target distribution. Our roughening scheme aims not
to compete with those regularization schemes in terms of conver-
gence speed but to provide a practical example demonstrating that
even for the vanilla single-chain MCMC scenario, setting the tar-
get distribution to be proportional to the path contribution may not
lead to the fastest convergence. We believe that by demonstrating
this together with our convergence estimation, future research on
designing better target distributions for MCMC rendering can be
inspired.

Adaptive MCMC. Our MC-based estimator is specifically de-
signed for low-order Markov chains. Sophisticated algorithms,
such as adaptive MCMC that devise a time-varying control function
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[AT08], or methods that leverage cache mechanisms [LZBG20],
will introduce very long-range correlation effects. Although these
effects are still covered by our theoretical analysis, they require
more comprehensively designed MC estimators. However, as the
sample correlation also remains an important factor for those meth-
ods, the general idea of improving the target distribution still holds.
As our experimental results show, the roughening application also
provides benefits to methods that build on adaptive MCMC like
LMC [LZBG20].

Limitations and future work. Our derivations rely on MCMC
samples in equilibrium state and only assess the average conver-
gence performance of MCMC algorithms. Specific runs might still
diverge from theoretical predictions, and early unstable samples,
usually called ‘burn-in’, are not considered. The number of samples
for the MC-based covariance estimator and the choice of k need to
be manually specified. An optimal parameter or an adaptive deter-
mination of the number of samples, along with the use of advanced
samplers for initial samples, presents another direction for future
research.

Our rendering-with-roughening application serves as a prelimi-
nary example demonstrating that it is possible to balance sample
variance and correlation by optimizing the target distribution. A
potential area for future research includes pursuing an optimized
target distribution for specific rendering tasks. One possible direc-
tion involves integrating with a differentiable rendering framework
to compute gradients and optimize the target distribution as a hy-
perparameter.

Conclusion. We present a theoretical framework for estimating the
convergence of MCMC rendering algorithms, accounting for both
variance and sample correlation. Our Monte Carlo algorithm, de-
veloped within this framework, accurately and efficiently estimates
MCMC rendering convergence and is validated through examples.

Our analysis shows that setting the Markov chain’s stationary
distribution proportional to the measurement contribution of light
paths may not lead to the fastest convergence. To address this, we
incorporate material roughening into MCMC rendering in an un-
biased manner. For scenes with complex light-transport effects, a
well-designed roughening scheme significantly enhances conver-
gence speed.
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Appendix

Preliminary on Markov Matrix For a given Markov process, we
define its state transition matrix as the Markov Matrix M ∈ Rm×m,
the Markov process will reaching a steady distribution |g⟩, where
M |g⟩ = |g⟩. Here we follows the bra-ket notation for linear alge-
bra, where |g⟩ stands for a column vector and ⟨g| as a row vector;
M |g⟩= |g⟩ means matrix M multiply with the vector |g⟩.
Lemma 1 For a valid Markov process with transition matrix M ∈
Rm×m and steady distribution |g⟩, there must be an eigenvalue of 1,
and the magnitudes of all other eigenvalues are smaller than 1.

With lemma 1, we can sort the eigenvalues by their magnitudes
decreasing and got λs,s = 1,2, ...,m, where |λs| ≤ 1 ,and λ1 = 1.
The Markov matrix can be written in the diagonal form:

Mk = QΛ
kQ−1 (17)

where Λ
k = Diagm(1,λk

2, ...,λ
k
m).

Proof There must be an eigenvalue of 1:

M |⃗g⟩= g⃗

Given any none-zero vector u⃗0, we can represent it using the eigen-
vectors of M:

u⃗0 = c1β⃗1 + c2β⃗2 + · · ·+ cmβ⃗m

Furthermore, there is

An |u⃗0⟩= c1λ
n
1β⃗1 + c2λ

n
2β⃗2 + · · ·+ cmλ

n
mβ⃗m

where |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λm|. On the other hand, since g⃗
is the stationary distribution, we have

lim
n→+∞

An |u⃗0⟩= [⃗g, g⃗, ..., g⃗] |u⃗0⟩

Thus, limn→+∞ An |u⃗0⟩is none-zero and finite. There must be λ1 =

1,β⃗1 = g⃗, and 0≤ |λi|< 1 for i≥ 2.

Lemma 2 The eigenvector corresponding to the eigenvalue 1 is the
steady distribution of the Markov process. Thus, we have:

QΛ1Q−1 = lim
k→+∞

Mk = [|g⟩ , |g⟩ , ..., |g⟩] =: G (18)

where Λ1 := Diagm(1,0,0, ...,0).

Proof

lim
k→+∞

Λ
k = Λ1

QΛ1Q−1 = lim
k→+∞

QΛ
kQ−1

= lim
k→+∞

Mk

= [⃗g, g⃗, ..., g⃗]

=: G

(19)

Proof on the convergence of L j

Theorem 1 For a valid Markov process, the expectation of nSE j is
converging to a constant L j:

L j := lim
n→+∞

nE[(Î j− I j)
2] = Var(w j(x))︸ ︷︷ ︸

Variance Term

+ 2
+∞
∑
k=1

Rk︸ ︷︷ ︸
Covariance Term

(20)

where:

Var(w j(x)) = ∑
x∈Ω

h2
j(x) f 2(x)

g(x)
− I2

j (21)

Rk = ⟨w j|Mk−G |w j ◦g⟩ (22)

The notion of ◦ is the Hadamard product. We further define this
constant as the convergence constant L j.

Proof For simplification, we assume that f (x) and g(x) are normal-
ized to ∑x∈Ω f (x) = 1, ∑x∈Ω g(x) = 1. Then for the variance term,
based on the definition of mathematical expectation E we have:

Var(w j(x)) = ∑
x∈Ω

((w j(x)− I j)
2 ∗g(x)) (23)

= ∑
x∈Ω

w2
j(x)g(x)− I2

j (24)
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substituting with w j(x) = f j(x)/g(x) then we get:

Var(w j(x)) = ∑
x∈Ω

h2
j(x) f 2(x)

g(x)
− I2

j (25)

For the covariance term, we first apply the definition of Cov and
expand the brackets:

Rk = Cov(w j(xs),w j(xs+k)) (26)

= E(w j(xs)w j(xs+k))− I2
j (27)

then according the definition of mathematical expectation E we
have:

Rk = ∑
x,y∈Ω

w j(x)w j(y)g(x)M
k(y,x)− I2

j (28)

We can use the bra-ket notation for matrix-vector multiplication to
simplify the above summation, the left term can be written as:

∑
x,y∈Ω

w j(x)w j(y)g(x)M
k(y,x) = ⟨w j|Mk |w j ◦g⟩ (29)

according to the image formation model, we then expand the I2
j as

follows:

I2
j = ∑

x,y∈Ω

w j(x)g(x)w j(y)g(y) (30)

replacing g(y) with its matrix form equivalent G(y,x) and applies
the bra-ket notation:

I2
j = ∑

x,y∈Ω

w j(x)g(x)w j(y)G(y,x) (31)

= ⟨w j|G |w j ◦g⟩ (32)

Thus we got the matrix form of the lag-k covariance Rk as follows:

Rk = ⟨w j|Mk |w j ◦g⟩−⟨w j|G |w j ◦g⟩ (33)

= ⟨w j|Mk−G |w j ◦g⟩ (34)

The variance term (Var(w j(x))) represents the variance of a single
sample w j(x) where x follows the distribution g(x). The infinite
series sum of Rk (k=1,2,...) measures the covariance of the sample
sequence.
To simplify the summation of Rk in the covariance term,
we define some auxiliary diagonal eigenvalue matrix: Λ1 :=
Diagm(1,0,0, ...,0) and Λ

k
∗ := Diagm(0,λk

2, ...,λ
k
m). With this no-

tation, according to Lemma 2 we can have:

Mk−G = Q(Λk−Λ1)Q
−1

= QΛ
k
∗Q−1

(35)

thus we have:
+∞
∑
k=1

(Mk−G) = QΛsQ−1 (36)

where Q is the matrix consists of the eigenvectors of M and

Λs =
+∞
∑
k=1

Λ
k
∗ = diag(0,

λ2
1−λ2

,
λ3

1−λ3
, ...,

λm

1−λm
) (37)

The covariance term can be further simplified as:

2
+∞
∑
k=1

Rk = 2⟨w j|QΛsQ−1 |w j ◦g⟩ (38)

From Equ. 38 we can derive that the cumulative lag-k covariance
converges exponentially to a constant as k increases. Also accord-
ing to Equ.25 the variance term is a positive constant value regard-
less of n, hence the sum of the variance and covariance term con-
verges to a constant:

lim
n→+∞

nSE j = Var(w j(x))+2⟨w j|QΛsQ−1 |w j ◦g⟩
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Figure 6: Equal time comparisons among three MCMC algorithms with and without BRDF roughening. Roughening BRDFs by 1.25×
significantly improves sampling for specular paths. The inserted table shows the mean squared error (MSE), averaged over 16 runs to
eliminate randomness.
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