Physics-Based Differentiable Rendering: A Comprehensive Introduction

SHUANG ZHAO, University of California, Irvine
WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne
TZU-MAO LI, MIT CSAIL

Differentiable Differentiable
physical simulation objective function
y=/(x) z=2g(y)
zeR
dy d £(x) dz d ¥)
=== 5-f(x 5o = 5280y
Jx Jx dy dy
Input parameters Output dz
shape & position of objects, materials, '\ Update scene rendered image E

light sources, camera pose, etc.

Fig. 1. Rendering a scene using a realistic light transport simulation can be interpreted as evaluating a function f(x),
whose input x encodes the shape and materials of objects. Owing to the complexity of f, an inverse y = f~1(x) to retrieve
scene parameters from an existing image y is normally not available. Differentiable renderers pursue such an inverse by
differentiating f and casting the inversion into a gradient-based minimization process.

ACM Reference Format:

Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. 2020. Physics-Based Differentiable Rendering: A Comprehensive Introduction.
In Special Interest Group on Computer Graphics and Interactive Techniques Conference Courses (SIGGRAPH °20 Courses), August
17, 2020. ACM, New York, NY, USA, 36 pages. https://doi.org/10.1145/3388769.3407454

1 INTRODUCTION
Differentiable rendering is a emerging tool enabling the inverse analysis of images—for instance, determining
the shape and material of an object from one or multiple input photographs. This problem is surprisingly

challenging—to understand why, consider Surface [Tndirect | Specular (This 15 & PRABEEDD
the photograph on the right. Each pixel en- microstructure light & 1eﬂectlon =

codes a complex and messy superposition \ ’ @
of different physical effects: light can in- \:['
teract with one object (e.g. the red book) \

and then propagate its color to neighboring W

objects. Specular surfaces create indirect g
views of other parts of the scene. Reflective
and refractive objects focus light into caus- ™ olumetric _
tics. Light can also be absent because it is Defocus attering £
blocked by another object. A milliliter of
milk contains more than a billion of micro-
scopic fat globules, and light entering such a volumetric material can interact with many thousands of them

= Shadow

SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA
2020. ACM ISBN 978-1-4503-7972-4/20/08...$15.00
https://doi.org/10.1145/3388769.3407454

https://doi.org/10.1145/3388769.3407454
https://doi.org/10.1145/3388769.3407454

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

before exiting the glass some distance away, giving milk its typical “glow”. The surface seen through a pixel may
not even be in focus, in which case its interpretation is even less clear. Every position is effectively coupled to all
other positions through the physics of light, and it is therefore not possible to analyze one object in isolation—we
need to understand the properties of all other objects at the same time!

Existing physics-based rendering algorithms generate images by simulating the flow of light through detailed
virtual scene descriptions. This process can also be interpreted as evaluating a function f : X — Y, whose
high-dimensional input encodes the shape and materials of objects (Figure 1), and whose output y = f(x) is a
rendered image that reveals the complex radiative coupling between objects (shadows, interreflection, caustics,
etc.). These effects are crucial in the pursuit of (photo-)realism, but they also obscure the individual properties of
objects as shown on the previous page. For this reason, an inverse f~! to retrieve parameters x from an existing
image y is generally not available.

Methods in the area of physics-based differentiable rendering seek to provide such an inverse. However,
instead of directly evaluating f~!, they target a more general optimization problem that requires the choice of an
objective function z = ¢g(y) to quantify the quality of a tentative solution. In the simplest case, we could, e.g.,
set g(y) = ||y — Yret||? to measure the consistency of a simulation with an empirical observation yyef. Ordinarily,
determining parameters x that optimize g(f(x)) would simply be infeasible due to the nonlinear nature of the
parameter space and its enormous dimension: every texel, voxel, and vertex in a mesh is a free parameter, and
detailed scenes can easily have hundreds of millions of them!

The main distinction and benefit of differentiable rendering compared to “ordinary” rendering is the availability
of derivatives (9z/ax), which provide a direction of steepest descent in the high-dimensional parameter space
(Figure 1). Using any suitable gradient-based optimization technique, a differentiable renderer is then able to
successively improve the parameters with respect to the specified objective. The high level of generality of
this approach has made physics-based differentiable rendering a key ingredient for solving challenging inverse-
rendering problems in a variety of scientific disciplines. Another benefit of differentiable rendering techniques
is that they can be incorporated into probabilistic inference and machine learning pipelines that are trained
end-to-end. For instance, differentiable renderers allow “rendering losses” to be computed with complex light
transport effects captured. Additionally, they can be used as generative models that synthesize photorealistic
images.

Challenges. Compared to its “ordinary” counterpart, physics-based differentiable rendering introduces unique
theoretical and practical challenges. For instance, practical problems can involve many (e.g., 10°~10'°) parameters,
making simple techniques for differentiation such as finite differences impractical. Standard frameworks for
automatic differentiation (e.g., PyTorch or Tensorflow) that are widely used to train neural networks are poorly
suited to the prohibitively large and unstructured graph structure underlying the computation of complex light
transport effects. Finally, geometric derivatives involve a unique challenge: boundaries of objects introduce
troublesome discontinuities during the computation of shadows and interreflections that lead to incorrect
gradients if precautions are not taken. Thankfully, recent advances in physics-based differentiable rendering
theory have enabled the scalable differentiation of radiometric measurements with respect to arbitrary scene
parameters as well as unbiased Monte Carlo estimators. In this course, we provide an in-depth introduction
to general-purpose physics-based differentiable rendering.

Course outline. This course is comprised of two major components: (i) a theory-focused component covering the
mathematical foundation of physics-based differentiable rendering; and (ii) an implementation-focused component
discussing the corresponding Monte Carlo solutions as well as how these estimators can be implemented correctly
and efficiently. For physics-based differentiable rendering theory, we cover the following topics.

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

§2. Motivation and Preliminaries: We introduce notation and principles of physically-based rendering.
Following this, we motivate differentiable rendering using a toy example of a scene containing two
constant-colored triangles. We also introduce the mathematical preliminaries on the differentiation of
integrals using Leibniz’s rule and Reynolds transport theorem.

§3.1. Differentiable rendering of surfaces: We utilize the results from §2 to differentiate the rendering
equation (RE) in §3.1.1 and §3.1.2, enabling general-purpose differentiable rendering of surfaces.

§3.2. Differentiable rendering of participating media: We discuss how the full radiative transfer equa-
tion (RTE) can be differentiated with respect to arbitrary scene parameters.

§3.3. Radiative backpropagation: We explain how differentiation can be cast into a light transport problem
to enable efficient differentiation of scenes involving millions of parameters.

On the implementation side, we discuss the following aspects:

§5.1. Monte Carlo solutions: We present a few Monte Carlo solutions for derivative estimation including
differentiable path tracing with edge sampling (§5.1.1), its reparameterized variant (§5.1.2), and differentiable
volume path tracing (§5.1.3).

§5.2. Automatic differentiation: We discuss how automatic differentiation (autodiff), a key ingredient of many
general-purpose differentiable renderers, should be implemented for rendering.

Lastly, we demonstrate in §6 potential applications of physics-based differentiable rendering to several challenging
inverse rendering problems.

1.1 Scope

In this course, we will mainly discuss how to correctly and efficiently differentiate rendering operations, with
hard surface boundaries in the presence.

Geometry and representation. We focus our discussions on mesh representations for our scene geometry, as it
is currently the standard of 3D photorealistic rendering. Most techniques and theories we present can potentially
be generalized to handle other geometric representations that represent surfaces such as implicit functions,
polynomials, or boundary representation.

Approximate versus unbiased methods. We mainly focus on how to correctly derive the derivatives and consis-
tent/unbiased estimators of rendering in this course. We briefly discuss approximate methods in Section 2.6, and
show that many of them are compatible with our theory. We note that it is still debatable whether approximation
is necessary for fast differentiable rendering. From our experience, the main bottleneck of most differentiable
rendering systems lie in the irregular memory access in the derivative computation, instead of the visibility com-
putation, regardless of rasterization or ray-tracing. Further research is required to accelerate both approximated
and unbiased methods.

Scene initialization, parametrization, topology, and prior. We focus on discussing the gradient computation of
the rendering process. A real inverse rendering pipeline is more involved than just the gradient computation,
requiring careful initialization and parametrization to avoid convergence to low-quality local minima, handling
of discrete topology changes of meshes, and assigning priors to resolve ill-posed aspects of inverse problems.
These issues, while being very important research problems, are beyond the scope of this course.

2 MOTIVATION AND MATHEMATICAL PRELIMINARIES

In this section, we will work on a simplified problem with rendering two 2D triangles with constant color (Fig. 2a).
The two triangles can occlude each other. In this case our scene parameters are the 6 triangle vertices (12 real

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

(a) (b) no anti-aliasing (c) with anti-aliasing

Fig. 2. We start with a simplified rendering example to explain our motivation. Given two constant color triangles in 2D
(a), we want to generate an image. A naive approach is to evaluate the color for each pixel at the center (b). However, this
approach is prone to aliasing in the signal processing sense, which produces artifacts such as jagged edges, fake fine details,
and temporal flickering. Most renderers, whether differentiable or not, real-time or offline, rasterized or ray-traced, have to
perform anti-aliasing (c). Anti-aliasing is formulated as an integral for each pixel, over the support of a low-pass filter. In the
case of a uniform box filter, we want to compute the average color for each pixel.

numbers) and the colors of the two triangles (6 real numbers). Given these 18 real numbers as a vector s, where
we denote the vertices parameters as s, and the color parameters as 7., we want to generate an image I(rr) and
compute a loss function L(I(sr)) (e.g., comparing the image with a target, or feeding the image to a neural network
classifier). Our goal to compute the gradient V,L(I(sr)) so that we can minimize the loss using gradient-based
optimization.

We will first show that rendering is usually modeled as an integration problem. Then we show that, while
the integrands are discontinuous, the integrals are actually differentiable. Unfortunately, naive combination of
integral discretization and automatic differentiation does not compute the correct derivatives that converge in
the limit. We discuss the mathematical tools that help us to correctly discretize the derivatives of integrals.

2.1 Rendering as an Integration Problem

Before we talk about the gradient, we need to discuss how the image I is defined. How do we generate an image
from these two triangles? We can imagine that the two triangles define an underlying imaging function m(x, y;)
that maps continuous 2D coordinates (x, y) to a RGB color, depending on which triangle the 2D coordinate hits.
However an image is a discrete 2D grid. How do we go from the imaging function m to the image I? A naive
approach (Fig. 2b) is to evaluate m at the center of each pixel. This approach is prone to aliasing, which causes
issues including jagged edges, temporal flickering, Moiré patterns, and breaking up fine details [7].

From the signal processing perspective, we are sampling this 2D domain with a discrete image, where the
sampling rate is determined by the imaging function. Since the imaging function m is discontinuous, it has energy
at all frequencies and is not bandlimited. Therefore, as long as we are evaluating at the center of the pixels, we
will suffer from the aliasing problem no matter how large we select the resolution. To resolve the aliasing issue,
we need to remove the high frequencies energy from the imaging function m. This is done by convolving the
imaging function with a low pass filter (Fig. 2c). For each pixel I;, we evaluate an integral centered around the
pixel center (x;,y;):

L= // k(x, y)m(xi + X, yi + y; m)dxdy = / f(xy: m)dxdy,)

where k is the filtering kernel. For convenience we define the rendering integrand f (x, y) = k(x, y)m(x;+x, y; +y).
Intuitively, to remove the artifacts introduced by aliasing, instead of only evaluating the center at each pixel,
we evaluate the weighted average color over an area. The selection of the filtering kernel k is an art in its own

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

right, which involves subjective trade-offs between blurriness and ringing artifacts [29]. From now on we will
assume we are using a simple kernel called box filter, which assign uniform weights inside the pixel area. The
technique we introduce throughout this course works for any filter kernels, even non-differentiable ones.

There are at least two ways to solve the anti-aliasing integral (Eq. (1)), one is analytical and one is numerical.
Catmull [4] proposed to solve the integral analytically, by clipping the polygons against each other and partition
the integral into multiple regions, and analytically integrate the polygons. Arvo [2] derived an analytical approach
to compute the derivatives of diffuse global illumination. The analytical approach is unfriendly to modern hardware
architectures as it is hard to parallelize and involves extensive branching. It is also difficult to generalize analytical
integral for a different imaging function m and a kernel k - What if we want to use primitives other than triangles
such as ellipse or polynomials? What if, inside the polygons, we have color variation, and we don’t have analytical
solution for the color variation?

Most renderers, whether real-time, offline, physics-based, differentiable or not, need to deal with the aliasing
issue. Most of them solve the anti-aliasing integral using numerical solution by evaluating the imaging function
at various locations, a process often called discretization:

N
1
I = N ;f(xj, yj;), (2)

The naive approach of evaluating at pixel center can also be seen as a (poor) approximation to the integral by
setting N = 1 and xy = yp = 0.5.

We say a discretization is consistent if the discretization converges to the integral, i.e., limy_,c I/N Zj\il fxjyj) =
I;. The choice of the samples x;, y; does not need to be stochastic. Nevertheless, if we are randomly sampling
x;j,y; using probabilistic distribution, we say a discretization is unbiased if the expectation is the same as the
integral, i.e, B[f(xj,y;)] = L.

It turns out that, as we will show in Section 3, integrals are ubiquitous in rendering [6], and they do not just
appear in anti-aliasing. For example, we can model motion blur as an integration over time during the camera
shutter is open. We can model defocus blur for non-pinhole cameras as an integration over the aperture area.
Given an area light, we compute the radiance that goes from the light source to the camera by integrating over
the area of the light source. Kajiya [20] showed that we can model global illumination as an recursive integral, by
integrating each 3D point in the scene recursively. Therefore, most rendering problems are about 1) How do
we model the integrand f inside these multi-dimensional integrals, and 2) How do we evaluate, approximate,
precompute, or compress the integral / f for each pixel. Differentiable rendering instead asks the third question:
how do we differentiate these integrals?

For now let us focus on the anti-aliasing problem with the two constant color triangles in Figure 2.

2.2 Computing Gradients by Differentiating the Integrals.

Remember that our goal is to compute the gradient of the image I that contains the two triangles, over some
scalar loss function L, that is, VL (I (;r)). Using the chain rule, we know that for each component 7 € R in the
parameter vector st

] oL aI;()
5uwm=2%m)ﬁ. (3)

i

To be more concrete, if our loss function is the sum of pixel-wise squared difference with another target image I,
that is,
. 2
L= (1tm) - I(m) @

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

-0.5

0.5 -
1.0 1.0

Fig. 3. A discontinuous integrand does not lead to non-differentiable integral. Here we show a discontinuous function
z=x+y>071.0 : 0.5and we want to integrate it over [—1,1] X [—1,1]. The integrand z is not differentiable with respect
to the boundary parameter 6. Therefore, all the yellow samples will return zero if we ask them the derivative with respect to
0. However, changing 0 (the blur arrow) will lead to a continuous change to the volume below the curve. This is because
derivative of a sample can only detect local changes, and the chance a sample lands exactly at the boundary is zero.

then the gradient is

Z 2 (Ii(n) - fi(n)) %)

1

The loss can be any differentiable function, including a neural network. We can compute L’s gradient with
respect to the image (9L/o1;(x)) efficiently using the backpropagation or, equivalently, reverse-mode automatic
differentiation algorithm (Section 5.2).

Now we want to compute the derivative of a pixel color with respect to the scene parameters oL (#)/on. A
common misconception of the non-differentiability of rendering is that the derivative o%(=)/ax is discontinuous
and not differentiable. However, recall that I; is an integral that evaluates the average color within the filter
support. Therefore, the movement of the triangle vertices will in fact lead to continuous and differentiable changes
to the average color (Fig. 3). The integrand of rendering is discontinuous and not differentiable, but the
integral is actually differentiable! Importantly, we did not make rendering an integration problem to make it
differentiable. Instead, rendering is an integration problem in the first place. All the approaches in any rendering
methods, real-time or offline, are different approximations or discretizations of the rendering integral.

How do we compute the derivatives of an integral? Recall that we wanted to compute the integral numerically
(Eq. (2)). Unfortunately, we cannot just automatically differentiate the numerical integrator. For the vertex position
parameters, the numerical integrator will always evaluate to 0 (the function return the color based on which
triangle (x, y) hits). However, the derivative of the integral with respect to a vertex position parameter 7, € 7, is

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

not 0 (Fig. 3).
ﬂf(x y; r)dxdy # = EN — f(xj,y;;m) = 0. (6)
am, 2 Nj - o, e '

In general, the discretization and the gradient operator do not commute for discontinuous integrands. This is
because derivatives are measuring local changes, and uniform discretization has zero chance of detect the local
changes around discontinuities. To see this, let us simplify the problem and consider the following 1D derivative
integral with a step function:

1
%/0 (x<p?1:0)dx. 7

If we discretize this function and evaluate derivative with respect to p, the derivative is always 0. However, the
integral evaluate to p for 0 < p < 1 and thus the derivative is 1. This is because the discretization relies on
point sampling of the integrand. However, the point sampling can only access the integrand locally through
its infinitesimal neighborhood. Given a sample x; and its small neighborhood (x; — €, x; + €), the only location
where change happens is at x = p. However, the chance of us hitting x = p randomly is exactly zero. Therefore
we will never detect the change of the integral through discretization.

Our strategy to differentiate the integrals is then to explicitly put samples at the discontinuities to detect the
local change. In the following we provide the mathematical tools that allows us to do this.

2.3 Distributional Derivatives and Dirac Delta

One way to formalize the statement above mathematically is to use the concept of distributional derivatives,
which defines the derivative for even discontinuous functions. In the case above, the distributional derivative of
the integrand with respect to p is a Dirac delta §:

%x<p?1:0:5(x—p). (8)

d(x — p) is not a function but a distribution. We cannot just feed a Dirac delta an input value and get an output
value back. We can only evaluate Dirac delta through an integral (usually called the test function). We define the
Dirac delta’s integral as /01 0(x —p) =1if 0 < p < 1, otherwise it is 0.

Mathematically, doing algebra with Dirac delta inside an integral and derive the correct measure is not entirely
trivial. This is mostly due to the fact that Dirac delta is a distribution and not a function. For example, the
multiplication of two Dirac deltas is not well-defined. While it is possible to derive differentiable rendering
using Dirac delta [24, 38], in this course note we use an alternative strategy that leads to simpler derivations in
higher-dimensional space.

2.4 Leibniz’s Rule for Differentiating 1D Integrals

Our alternative strategy is to, conceptually, split the integral such that all the discontinuities are at the boundaries.
We will demonstrate this for 1D functions, and generalize this to higher-dimensional space in the next subsection.
For the step function example we can split it into two constant integrals

1 p 1
i/ (x<p?1:0)dx=i/ 1dx+i/ 0dx. 9)
ap Jo ap Jo ap Jp

Importantly, the splitting is done only for derivation purposes, and we do not actually clip the polygons for
computation.

!Here # means that when we choose x;, y; randomly, the sum will not converge to the integral even if N goes to infinity. In contrast, the
original approximation (Eq. (2)) does converge to the corresponding integral when we choose the samples randomly.

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

/ f(x;) | interior

N
—
7\

v

[~ (pr;7) — fT(pr;7) boundary

Fig. 4. To compute the derivative of an 1D integral with a discontinuous integrand, given a set of boundary points (orange)
that include all discontinuities, we can compute the derivatives by separately computing the derivatives of the continuous
part (the interior derivative), and the discontinuous part (the boundary derivative). The set of boundary points can include
continuous points, since the difference f~ — f* evaluates to zero for those points.

After the splitting, the derivative can then be evaluated through the fundamental theorem of calculus, i.e.,

P 1
9 1dx =1, i/ 0dx =0, (10)
p Jo ap Jp

thus the derivative evaluate to 1.

The general version of differentiation with respect to both the integral boundaries and the integrand is the
Leibniz’s rule. Formally, let 7 € R and consider the following Riemann integral over some interval (a(r), b(r)) C
R:

b(r)
/ | flamds (11)

where the integrand f is differentiable everywhere with respect to x and 7. Then, Leibniz’s rule for differentiation
under the integral sign [10] states that the derivative of Eq. (11) with respect to x is

interior
9 b(n) b(r)

-~ " flx;m)dx = . f(x;m)dx |+ b(x) f(b(n);) — a(x) f(a(n),) , (12)

boundary

where f = 9f/an, G := da/dr, and b := db/ax. This equation involves a interior and a boundary term where the
former equals the original integral (11) with the integrand differentiated while the latter given by the integrand
evaluated at the integral boundaries a(r) and b(r) modulated by their change rates a(x) and b(x). The proof of
the equation easily follows from the fundamental theorem of calculus.

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA

n, X

/ fla;m) /(n;j)Af(ur:‘rr)

interior boundary

@

(b)

Fig. 5. (a) illustrates Reynolds transport theorem for differentiating 2D integrals. In contrast to the 1D case, our boundary
term becomes an integral as well. As in the 1D case, our boundary points can include points that land in the continuous
regions of the integrand, such as the occluded part of the blue triangle. For the continuous regions, the difference df(x;)
evaluates to 0. b shows that, for each point on the boundary, we need to compute the 2D movement of the boundary with
respect to the differentiating parameter x. We then need to project x to the normal direction and multiply it with the
difference. This is to account for the infinitesimal width of our line integral, so that we can properly measure the infinitesimal
area changes at the boundary.

. . 1
Therefore, given an 1D integral /0 f(x; w)dx, and a set of points py, p1, ..., pm—1 represent the point of disconti-
nuities with respect to the parameter 7, the derivative of the integral is

. . boundary
interior

1 1 M
%/0 flxm)dx = '/0 flx;m)dx |+ ;(f_(pk;”)_fr(}?k;ﬂ)), (13)

where we define f~ (x;) and f*(x; 7) as the right-hand and left-hand limits of f at x respectively, i.e., f~(x;) =
lim, 5~ f(x’;7) and f*(x;7) = limy_,,+ f(x’;). For notational convenience, when f is not differentiable
at (x;7), we define f(x;7) = 0. Intuitively, we are explicitly summing over the difference at the two sides
of the discontinuities. Fig. 4 illustrates this process. We can derive the exact same results using distributional
derivatives 2.3: the derivatives at discontinuities at py result in Dirac delta signals, which we can explicitly
integrate into the discrete sum.

We can then estimate the derivative integral (Eq. (13)) by discretizing the interior integral, and sum over all the
differences. Note that, first, the set of discontinuity points py can include points that turn out to be continuous,
since for continuous regions the difference f~(x; 7) = f*(x; 7). This is important for handling occlusion later in
2D when we do not know if a triangle boundary is occluded or not. Second, we do not need to actually decompose
the integral, since the continuous regions can be assembled back to the full integral.

Next we will generalize our approach to 2D and higher-dimensional spaces. To do this we will use a mathematical
tool in fluid mechanics that was used for tracking the evolution of a surface, called Reynolds transport theorem.

2.5 Reynolds Transport Theorem for Differentiating Multi-dimensional Integrals

In two-dimensional space, our discontinuities become lines instead of points (point discontinuities in 2D will
be smoothed out by the integrals and do not affect the derivatives). In our two triangles example (Fig. 2), the

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

discontinuities are defined by the edges of the triangles. Similar to the 1D case, we want to explicitly sample
the discontinuities, and evaluate the difference at the two sides. The point evaluation over the discontinuities
in 1D becomes integrals over the lines in 2D. We can formalize this idea using Reynolds transport theorem, a
generalization of the Leibniz’s rule for differentiation (12).

Formally, let f be a (potentially discontinus) scalar-valued function defined on some n-dimensional mani-
fold Q () parameterized with some 7 € R. Additionally, let T'(xr) € Q(x) be an (n — 1)-dimensional manifold
given by the union of the external boundary 9Q () and the internal one containing the discontinuous locations
of f. Then, it holds that

interior boundary

%(/Qfdg)z /Qf'dQ + /F<n,5c>Afdr, (14)

where x := % (note that x is a n-dimensional vector, representing the relative boundary movement with respect
to the parameter), dQ and dI respectively denote the standard measures associated with Q and T'; and (-, -)
indicates vector dot (inner) product. As in the 1D case, when f is not differentiable at (x; 7), we define f(x;) = 0.

Further, n is the normal direction at each x € I'(xr), and Af is given by?
Af(x) = lirg f(x+en) - linol f(x+en), (15)
e—0~ e—0*

for all x € T'(x).

Fig. 5 illustrates the idea. As in the 1D case (Eq. (13)), we have the interior term and the boundary term. The
interior term is just the derivative of the continuous part of the integrand. The boundary term is now an integral
that integrates over the difference at the (n — 1)-dimensional discontinuities I" (all the discontinuities with lower
dimensionality do not affect the derivative). For each point on the discontinuity, we compute the difference of the
integrand at the two sides of the boundary (Af). To take the infinitesimal area of the boundary changes with
respect to the differentiating parameters into account, we multiply the difference with the speed of the boundary
movement with respect to the parameters (x), projected to the normal direction (Fig. 5b). This multiplication is in
contrast to the 1D case, where the boundary can only move left or right and is always aligned with the normal
direction. See Flanders’ article for a simple proof of Reynolds transport theorem [10].

Discretizing the integrals. We now know how to compute the rendering derivative of our triangle rendering
example. Given our anti-aliasing integral (Eq. (1)), we separate its derivative integral into an interior integral
and a boundary integral using Reynolds transport theorem (Eq. (14)). We can then estimate the two integrals by
discretizing them:

. 1 N
/QfdQ ~ E;f(xj)

) (16)
Np
/r<n,x> Afdr ~ Nib ;m,x) Af(x;)

For the interior integral, we can just use the same discretization strategy in normal rendering. For example, we
can randomly sample inside the filter support. We can also divide the filter support into a grid, and sample the
center at each grid. Both rasterization and ray tracing can be used for computing the interior integral. For the

of _

2L~ 1. For the vertex positions parameters, -

constant color parameters, Er
C

2When x approaches T'(7) from the exterior of the integral domain Q (), the corresponding one-sided limit in Eq. (15) is set to zero.

10

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

For the boundary integral, we use the fact that the boundary domain I' can be include continuous points. For
the points that land in the continuous regions, Af evaluates to 0 due to the definition of continuity. Therefore we
define I' to be the set of points on all the triangle edges. To select a point on the edge, we first randomly pick an
edge (there are 6 edges out of 2 triangles), we then uniformly pick a point on the edge. To evaluate the difference
Af, in practice we select a small € and query f from the two sides. Furthermore, we are estimating many pixel
integrals I; in the same time. When we pick a point on the edge, we will gather all the pixels whose filter support
intersect with the point we pick, and scatter the derivative to the corresponding pixel integral discretization.

When there are more triangles in the scene, this can be accelerated by pruning out the set of edges that are not
the silhouette and importance sampling. We will discuss more about the discretization of the boundary integral in
Section 5.1.1.

2.6 Relation to Rasterization-based Differentiable Renderers

Our discretization strategy for the boundary integral above can only be efficiently computed using a ray-tracing
based visibility engine, since it requires random query to the pixel integrand f. Using hardware rasterization to
compute it is possible but likely to be wasteful.

However, many existing rasterization-based differentiable renderers can be seen as a particular discretization to
the boundary integral (Eq. (16)). For example, OpenDR [26] approximates the boundary term (n, x) Af using pixel
finite difference, and choose between central difference, forward difference and backward difference depending
on the result of the object ID detection. Kato et al. [21], on the other hand, apply an edge rasterization pass by
rasterizing all the edges, while interpolating the color buffer to compute the difference. de La Gorce et al. [9],
inspired by discontinuity edge overdraw [39], also perform an edge rasterization pass, but compute the difference
by assuming the mesh is a closed manifold, and compute the shading twice at the two sides of the silhouette.

Liu et al’s work [25] does not fully fit in our theory. They tackled the differentiable rendering problem
by changing the forward rendering formulation to be differentiable without the boundary integral, through
introducing two modifications: 1) They analytically approximate the spatial anti-aliasing integral (Eq. (1)) using a
sigmoid function by assuming only one triangle is inside the pixel. 2) They make all the surfaces in the scene
transparent using a form of weighted order independent transparency [28].

In contrast, our theory can support transparent surfaces as well without any modification. It works for both
order independent transparency and the more traditional OVER operator [37] — they are just different rendering
integrands f. We do not need to resort to spatial analytical approximation, which can produce artifacts when
many triangles are in a single pixel or when texture is presented. Rendering transparent surfaces efficiently is
a longstanding problem in real-time rendering, and it usually makes efficient occlusion culling techniques not
applicable. On the other hand, transparency can make inverse rendering more tractable and less susceptible to
local minima.

These methods, while being different approximations to the anti-aliasing and boundary integrals, are not
consistent nor unbiased discretization. This can have negative impacts on the convergence of stochastic gradient
descent, which assumes that the approximated gradients converge to the correct gradient.

The performance of rasterization v.s. ray tracing is a longstanding debate [8, 16]. Differentiable rendering
further introduces more performance tradeoffs with different memory access patterns and arithmetic intensity
characteristics. While the performance comparison between rasterization and ray tracing under the differentiable
rendering context deserves at least a full stand-alone research article, we list a few remarks here:

e A common misconception is that ray tracing can only be used for computing advanced effects such as shadow
and global illumination. In contrast, the techniques we introduced here can be used for rendering local shading
as well.

11

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

e Visibility query is usually not the biggest bottleneck in current differentiable rendering systems. Instead, most
of the rendering time is spent on incoherent memory access, irregular scattering, and atomic operations during
the derivative computation.

o The interior integral and the boundary integral do not need to be computed using the same visibility algorithm.
One can compute the interior integral using rasterization, while computing the boundary integral using ray
tracing.

e Many acceleration strategies that are used in rasterization, such as the hierarchical Z-buffer [12] for occlusion
culling, can also be used for ray tracing based boundary evaluation (we can reject edges using occlusion culling
techniques).

o The set of the boundary is often sparse in the image space compared to the number of pixels. It is conceivable
that we can compute the boundary integral with much less samples (Nj,) compared to the number of pixels
while achieving very low error.

e Ray tracing is getting hardware support as well. The performance gap between coherent ray tracing and
rasterization is closing.

Nevertheless, our goal with the theory presented in this course is to guide future developments of differentiable
rendering with a principled mathematical model. We hope that our theory can be the foundation of future
approximation methods.

In the next section, we will generalize our theory to handle the recursive rendering equation that computes
global illumination, and the radiative transfer equation that models participating media.

3 PHYSICS-BASED DIFFERENTIABLE RENDERING THEORY

Given the mathematical tools described in §2, we now provide an in-depth introduction to the theory of physics-
based differentiable rendering. Specifically, we discuss in §3.1 the differentiation of the rendering equation (RE) [20]
with respect to arbitrary scene parameters. Then, we present in §3.2 the differentiation of the radiative transfer
equation (RTE) [5], another key equation to physics-based rendering.

3.1 Differentiable Rendering of Surfaces

Physics-based rendering of surfaces has been a central topic in computer graphics for decades and is governed
by the well-known rendering equation (RE) [20]. The RE is an integral equation stating that the (steady-state)
radiance L at any surface point x with direction w, is given by:

L(x’ (1)0) = LE(x’ wo) + / Li(x’ wi) f;(x’ Wi, (A)o) dg(wi)’ (17)
SZ

where L; indicate the incident radiance, f; denotes the cosine-weighted BSDF, and do is the solid-angle measure.

The RE has no analytical solution in general, and numerous numerical methods have been developed. Some of
the widely adopted examples include unbiased methods like unidirectional and bidirectional path tracing, as well
as biased ones such as photon mapping and lightcuts. [SZ: citations]

3.1.1 Direct lllumination. Before differentiating the full RE (17), we first consider the case of direct illumination
as a warm-up. Specifically, the radiance L, resulting from exactly one reflection at a surface point x with direction
w, equals

Lixon) = [Lty -0 £x0,00) ot (19

12

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

(a) Arc (b) Circle

Fig. 6. The normal directions of arcs and circles (that are respectively the projections of line segments and spheres) as
spherical curves.

where y is the closest intersection of a light ray originated at x with direction ;. That is, y = rayTrace(x, ;).
Unlike the RE (17) that takes the form of an integral equation, Eq. (18) is a simple spherical integral as its
right-hand side involves only known quantities.

We now consider the problem of calculating the derivative of L,(x, @,) with respect to some abstract scene
parameter 7 € R. Given x and @, let fiirect (@i; X, @0) = Le (Y, —;) fs(x, @i, @,). It holds that

. d d
[Lr(x, @0)]" = — [Le(x, @0)] = — / Jairect (@35 x, @o) do(w;) | - (19)
drz dr \Jg2
By applying Reynolds transport theorem (14) to this equation, we have
interior boundary
(e 00) = | [Ui 500 dot@) |+ [01,6) Misatos s o de@) . (0

where d? is the curve-length measure. In this equation, the interior term is an integral over the unit sphere S?,
which is independent of the scene parameter 7, making the integral variable w; also be 7-independent. The
boundary term, on the other hand, emerges due to the (jump) discontinuity points of fjirect (With respect to w;)
and captures how they “move” 7 varies. These discontinuity points forms 1D discontinuity curves, which we
denote as AS?, over the unit sphere. For any w; € S(x, @,), n (w;) is a vector in the tangent space of S? at w;
perpendicular to the discontinuity curve (see Figure 6). with unit-normal field n, (see Figure 6).

Assuming the (cosine-weighted) BSDF f;(x, ;, @, to be continuous with respect to w;, which is usually the
case except for perfectly specular BSDFs, the discontinuities of the integrand fgirect fully emerge from those of
the incident emission L. (y, w;), which is generally discontinuous due to occulsions [SZ: Add a figure.] Therefore,

Aﬁiirect (wi; X, wo) = fs(xs Wy, wo) AL, (y» _wi)- (21)

3.1.2 Differential Rendering Equation. Based on the analyses in §3.1.1, we now differentiate the full rendering
equation (RE) (17) using Reynolds transport theorem (14). This yields another integral equation, which we call
the differential rendering equation:

[L(x, @0)]" = [Le(x, 00)]" +

interior boundary

/ [Li(x, @) £ a0 00) ' do(@y) | + / (s, ox) £, @, 00) AL (x, o) de(w) . (22)
S2 AS2

13

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

Similar to its original counterpart (17), the differential rendering equation (22) has no analytical soltuion in
general. We will discuss Monte Carlo solutions to this equation in §5.1.

3.2 Differentiable Rendering of Participating Media

Besides surface reflection and refraction, another important type of light-transport effects is volumetric: light can
be absorbed and scattering within participating media comprised of microscopic particles. To model volumetric
scattering of light, the radiative transfer theory (RTT) [5] has been introduced by physicists half a century ago.
We review RTT in §3.2.1 and present its differential variant in §3.2.2.

3.2.1 Radiative Transfer Theory Preliminaries. Radiative transfer [5] uses energy conservation principles to model
light transport in participating media. At its core is the radiative transfer equation (RTE): Consider a medium
confined in a volume Q C R® with boundary Q. The steady-state RTE is a linear integral equation on the radiance
field L in the interior of the volume that can be expressed in operator form as [45]:

L= (KrKe+Ks)L+LO. (23)

In this equation, the transport operator Kt maps any function g : (Q \ 9Q) X S* — R, to a new function

D
(K g)(x. @) = /0 T(x'.x) g(x',) dr, (24)

where: x’ := x — rw; D is the distance from x to the medium’s boundary in the direction of —w;
D=inf{r eR; : x— 1w € IQ}; (25)

and T(x’, x) is the transmittance between x” and x, that is, the fraction of light that transmits straight between
x’ and x without being absorbed or scattered away:

T(x’, x) = exp (— /T O't(x — T’(l)) df/) , (26)

with oy denoting the medium’s extinction coefficient.
In Eq. (23), the collision operator Kc maps the interior radiance field L to®

(KeDxi@) =) [fy(x-0.0) Lix,o) dota) @7

=: LIns (x,w)

where oy and f;, respectively denote the medium’s scattering coefficient and single-scattering phase function, and
L™ is usually termed as the in-scattered radiance.* Additionally, the interfacial scattering operator Ks follows the
rendering equation (17) and is defined as

(Ks L) (x,) = T(x0, %) /S Js(x0, ~wi, @) L(x00, 1) do(ax), (28)

where x(:= x — Dw is a point on the medium’s boundary. This term accounts for contributed radiance due to
reflection and transmission at the medium’s boundary.
The last term on the right-hand side (RHS) of the RTE (23) is

L (x, @) = (K1 02 Q) (x,) + T (20, X) Le (%0, @), (29)
3In this course, we follow the convention that all directions point away from x when expressing BSDFs and phase functions, yielding the

negative sign before wj in Eq. (27).
“4Precisely, L™ captures the in-scattered radiance before volumetric absorption.

14

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

I =(KeKeL) + (KsL) + LO .
D —— —— N——
§3.2.3 §3.25 §3.2.6

Fig. 7. An outline of the derivations of the differential radiative transfer equation.

which indicates the contribution of radiant emission in the medium and from its boundary. In this equation,
0, = 0t — 05 is the absorption coefficient, and Q represents the medium’s radiant emission.

3.2.2 Differential Radiative Transfer. We now present a differential theory of radiative transfer introduced by
Zhang et al. [45] by showing how the interior radiance L can be differentiated with respect to some scene
parameter 7 € R. To this end, we derive the partial derivative L := oL/ax by differentiating each of the operators
on the right-hand side (RHS) of Eq. (23).

Assumptions. As most participating media and translucent materials are non-emissive, we neglect the volumetric
emission term Q in Egs. (29) when deriving L. Additionally, we assume that: (i) the RTE and RE parameters oy, o5,
fo» fs» and L. are continuous spatially and directionally; and (ii) there are no zero-measure light sources (e.g., point
and directional) or ideal specular surfaces (e.g., perfect mirrors).

Overview. Figure 7 outlines the structure of our derivations. As a preview, based on the assumptions above, the
scene partial derivative L will take the form of Eq. (45).

3.2.3 Differentiation of the transport and collision operators. We start with the first term on the RHS in Figure 7,
0Kt Kc L, which can be shown to equal [45]:
D 3
@K Ke D) (1.0) = [T'3) 0,x) £ (' 0) dr
0

D
+ / T(x', %) [65(x)) = Zi(x, 0, 7) 05(x")] L™ (x', @) dT + D T (0, x) 05(x0) L™ (x0, @), (30)
0

where x’ := x — 7w is a point on the ray originated from x with direction —w; xy := x — Dw is the location where
the ray intersects the medium boundary; L' is the in-scattered radiance from Eq. (27); and % (x, w, 7), defined as

Si(x, w,7) = / 6i(x — T'w) dr’, (31)
0

appears when we differentiate the transmittance T (x’, x).
In Egs. (30) and (31), 6; and J; are essentially material derivatives given by [22]

(x) = :—Z(x) + (£, Vo(x)), (32)

for o € {0y, 05} with V being the gradient operator.
Evaluating the RHS of Eq. (30) also requires D, L™ (xq, w), and Lins (x’, w). In what follows, we derive formulas
for these terms.

In-scattered radiance at the boundary. The last term required for evaluating 9, Kt K¢ L in Eq. (30) involves the
in-scattered radiance L™ at boundary point xy. Caution is needed here since light transport behaves differently
at the two sides of the boundary.

L™ (xy, @) is given by the limit of L™ (x’,) as x” approaches the boundary location x, from the interior of
the medium along the direction of —w. Namely, Li"S (x0, 0) = lim,_,p- L™ (x’, @) with x’ := x — te. This limit

15

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

S el A ()
5 H, &
@ (b)

Fig. 8. Calculating the in-scattered radiance L' at location x(€ 9 with direction @ pointing toward the interior of the
medium (illustrated in gray). (a) When o’ € Hy (i.e., pointing toward the exterior of the medium), the interior radiance
L(x9, ®”) involving a line integral (indicated as the dashed line in green) from the interior is used. (b) When @’ € H_, on the
contrary, the interfacial radiance L(xo, ’) from the interior is used. This radiance is in turn determined by interior radiances
reflected and refracted by the interface (shown as dashed lines in orange).

Y

Ay.
)>§(X)
): \ sin 6

(dw)= ——
Rt
(a) (b)
Fig. 9. (a) Definitions of S(x) and 8*Q(x). (b) Deriving the change-of-measure ratio sin /||y — x|| in Eq. (36) by projecting a
differential curve dy to the surface of a unit sphere around x.

can be further expressed as
L% (x0, @) = / fo(x0, @', @) L(x0, ®") dow” + / fo(x0, ', @) L(x0, ®") dow’, (33)
H, H

where H, and H_ are the two hemispheres separated by the boundary at x, (see Figure 8) given by
H, = {w’ €S? : (n(x), 0’ >0}, H_={w' €S? : (n(xy),w’) <0}, (34)
where n(x) is the boundary normal pointing toward the exterior of the medium (i.e., (n(x,),) < 0).

3.2.4 Differentiation of the in-Scattered radiance. Evaluating the RHS of Eq. (30) also requires the derivative of
the in-scattered radiance L™ of Eq. (??). Recall that LI is expressed as an integral of folx,—0',w) L(x,w") over
directions w’. Note that L(x, ®’) may have discontinuities in @’ (for fixed x) due to visibility changes. Thus, to
differentiate L™, we must consider how the discontinuities change with respect to the scene parameter 7.

Let S(x) C S? be a set of spherical curves capturing all discontinuities of f,(x, —’,) L(x, ®’) with respect to
®’ (see the red curves in Figure 9). At an interior point x € Q \ 9Q and direction @ € S?, the derivative of L™
can be expressed as

L (x,) = / o [fo(x,—0', @) L(x, ®")| do’ + / (n, @) fi(x, -0, 0) AL(x,0") dt(o’) . (35)
S? S(x)

:= Bins (x’w)

16

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

The first term on the RHS of this equation is an integral over the unit sphere S?, which is independent of the
scene parameter 7, making the integral variable @’ also be 7-independent. To evaluate this term, the derivative
of the phase function f; is needed. In practice, f;, usually has analytical expressions, allowing ﬁ,(x, —w’, w) to be
obtained using symbolic differentiation.

The second term in Eq. (35) arises from the boundary integral term in Eq. (??) after Reynolds transport
theorem (14) is applied. It emerges due to the discontinuities of f,(x, —@’, ®) L(x, ") with respect to ’, corre-
sponding to how the discontinuities “move” as the scene parameter 7 varies. We denote this integral as B™ (x, @),
wherein @’ is the change rate (with respect to) of the discontinuity location w’, and #(w’) indicates the curve
length measure.

In Eq. (35), n, is a vector in the tangent space of S? at @’ perpendicular to the discontinuity curve (see Figure 6).
Further, AL is the radiance difference across a discontinuity curve in S(x). We discuss both terms in more detail
later in this subsection.

While BI™ integrates over a set of spherical curves on S?, it is computationally more convenient to rewrite this
integral in terms of boundary curves in the 3D space. As shown in Figure 10, the 3D boundary curves comprise
all the geometric edges that cause discontinuities of L(x, ®”") in ®w’ when viewed from x, including (i) boundary
edges associated with only one face; (ii) silhouette edges shared by a front-facing and a back-facing face; and
(iii) front-facing sharp edges across which the surface normals are discontinuous.

Let 9?Q(x) C 9Q denote all the boundary curves when viewed from x. By changing the measure of curve
length from S? to the 3D Euclidean space, we rewrite the last term B™(x, @) in Eq. (35) as

B™(x,w) = / (n1,9:(y = %)) fi(x.x = y,@)AL(x,y — x) V(x,y) _sinf_ de(y), (36)
20 (x) lly — x|l
where y — x indicates the normalized direction from y to x, d,(y — x) is the same as ®’, V(x,y) denotes
the mutual visibility between x and y, and 0 is the angle between the tangent direction at y and y — x (see
Figure 9-b). As a result, £(y) here is the length measure in Euclidean space.

Lastly, we discuss how to compute the ingredients needed for evaluating Eq. (35), namely, n,, ®" = 9, (y — x),

and AL.

Normal. The normal n; in Egs. (35) and (36) emerges from the application of Reynolds transport theorem (14)
and represents the normal vector of the discontinuity boundary on the integration manifold (i.e., S?). Therefore,
n, must be in the tangent space of @’ € S2.

In practice, when the scene geometry is depicted using polygonal meshes, the boundary curves 3*Q(x) in
Eq. (36) are comprised of polygonal face edges. Consider an edge with endpoints p and q. Its projection on a unit
sphere centered at x is an arc on which every point has the same normal in the tangent space (see Figure 6-a):

_ (p—x)x(q—-x)

1 = .
l(p—x)x (g2

Change rate of ’. Boundary curves in 3*Q(x) may vary with respect to the scene parameter 7—for example,

an object may move in 3D along a trajectory parameterized by 7. Suppose that a point y € 8°Q(x) has a change
rate y. Then, the corresponding direction @’ = (y — x) has the derivative:

o — x-y \ _ x-y [s Xy
@ ‘aﬂ(uxfyn) = Tyl ~ @ <w,—”x,y”>~ (38)

(37)

Evaluating AL. Recall that, in Eq. (35), AL(x, ") indicates the difference in radiance across discontinuity
boundaries with respect to @’. This is given by the difference between two one-sided limits of AL(x, ®) when &
approaches the discontinuity boundary w’ from both sides along the normal direction n . Namely,

AL(x, ") = 611}151_ L(x,w"+en,) - eli_)rg L(x,w"+en,). (39)

17

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

-

(a) Boundary edges (b) Silhouette edges (c) Sharp edges

Fig. 10. Three types of edges (drawn in yellow) that can cause geometric discontinuities: (a) boundary, (b) silhouette, and
(c) sharp.

3.2.5 Differentiation of the interfacial scattering operator. We now move on to the second term in Figure 7, the
derivative of K L. Differentiating (Ks L) (x, @) = T(xy, ®) L;(x9, @) yields

(0xKs L) (x, @) = 9 [T (x0, x) Ly (x0, x)]
= T(xo’ x) Lr(xO’ w) + T(x()s x) Lr(an (O) (40)
= T(x0,x) [~ (Se(x, @, D) + D 6¢(x0)) Li (x50, @) + Lr (x0,)] .

The expression of T'(x, x) equals:
T (59, x) = =T (x50, x) (Zt(x, w,D)+D Gt(xo)) , (41)

where 3 follows the definition in Eq. (31) but with the distance variable 7 replaced by D. The last term D o (x()
appears because the total travel distance D in the medium depends on the medium’s boundary that might change
under 7.

The last component needed in Eq. (40) is L, (xo, @), whose specific form is analogous to L™ from Eq. (35) since
both L™ and L, involve integrations over S? (with the difference that L, modulates incident radiance with the
cosine-weighted BSDF f;, while L™ uses the phase function f;). Thus, L, takes the form expressed in Eq. (42):

Li(x,) = ./SZ A [fi(x,—0', @) L(x, ®")] do” +

(n1.0:(y = %)) fi(x.x > y@)AL(x,y — x) V(x,y) 225 de(y), (42)
oo Ty—xT

where AL follows Eq. (39). Further, 9, f; L in the first term depends on the derivative of the BSDF f; which can
generally be obtained using symbolic/automated differentiation.

3.26 Completing L. The final term in Figure 7 is the derivative of L(®) = TL.. Since Eq. (40) has already provided
9z TL;, L9 can be obtained by respectively replacing L, and L, in Eq. (40) with L. and L., yielding

L (x,) = 0z [T (x0, %) Le(x0, ®)] = T(x0,%) [~ (S1(x, @, D) + D 61(x0)) Le(x0, @) + Le(x0, @)| . (43)
Similar to ﬁ, and ﬁ, Le (x0, @) can be obtained using symbolic differentiation.

Putting together. We now combine Egs. (30, 40, 43) to get L, the partial scene derivative of the interior radiance
L.
Since L = L, + L, adding Eq. (40) and (43) effectively yields the derivative of the source term Q:

Q(x, @) = (a,[KsL +L<°)) (x, w) = T(x0, %) [~ (Z(x, @, D) + D 6y(x0)) L0, @) + L(x0,)] . (44)

18

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA
Adding Eq. (30) and (44) completes the derivation of L, as shown in Eq. (2?) below.

D
[L(x,@)] = /0 T(x',x)[os(x") L (x, @) + (65(x) — S(x, @, 7) o5(x”)) L (x, w)| dr (45)

+T(x0,x)[= (Zt(x, @, D) + D 0y(x0)) L(x0, @) + L(x0, @) + D 05 (350) L™ (0, w) |

3.3 Radiative Backpropagation

The preceding two sections discussed various challenges that arise during the differentiation of light transport
integrals containing discontinuities. We now turn to another important aspect that distinguishes differentiable
from “ordinary“ rendering: the parameter space X tends to be high-dimensional (10® — 10? D), and the same is
also true for the rendered image y € Y. This implies that the Jacobian matrix J; = 0f /9x of partial derivatives
of f is extremely large—e.g. ~3.7 terabytes of memory in single precision if dim X = dim Y = 10°, making its
explicit storage or computation impractical. The Jacobian also lacks the sparseness or low-rank structure that are
common requirements of algorithms that can efficiently operate on large matrices.

Although working with J ¢ directly is hopeless, matrix-vector products involving Jr can be computed very
efficiently, as we will see in this section. Two different types of matrix-vector products are used by current differ-
entiable renderers: forward-mode methods evaluate 8y = J¢ 64 to determine how an infinitesimal perturbation
O« of the scene parameters changes the output image. In the simplest case, d is a “one-hot” vector, which will
extract a single column of Jy and thus visualize how the rendered image will change when one of the scene
parameters is perturbed, as shown below for a Rubik’s cube.

Reflectance of front faces [Rotation of top Translation of cube Translation of light source

For example, the second image shows that changing the color of the front faces of the Rubik’s cube will lead to a
corresponding change in the rendered image (where red indicates a positive change and blue indicates negative
changes). Also, observe how the indirect nature of light (inter-reflection) leads to changes in the reflection on
the shiny table. Forward-mode differentiation can be handy to visualize and debug differentiable rendering
algorithms, but it is a poor fit for gradient-based optimization of scenes with many parameters, since its runtime
cost grows linearly with the number of scene parameters for which derivatives are sought.

In contrast, reverse-mode approaches rely on a matrix-vector product involving the transpose of the Jacobian,
ie, 8x = _]fT &y, which captures how the scene parameters should be updated to realize a desired perturbation
&y of the output image. This is an ideal match for gradient-based optimization involving the composition a
rendering algorithm and an objective function. Together with the chain rule, it enables splitting the differentiation
of f(g(x)) into three conceptual steps:

(1) Running an ordinary rendering algorithm to obtain y = f(x).

(2) Differentiating the objective function in reverse mode to obtain &, = _]g (y) - 1. The parentheses indicate
that the derivative of the objective is evaluated at y, and the right hand side of the matrix-vector product is
trivial as g is scalar-valued. This operation produces a vector with one element per pixel of the output image,
indicating how the image should be changed to first order.

Variables containing derivatives with respect to the optimization objective are denoted adjoint variables in the
context of reverse-mode differentiation, and for this reason, we will call 6, € R" the adjoint rendering. Note
the term adjoint has a variety of other meanings, e.g. to characterize equations and algorithms that build on

19

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

the reciprocal nature of light transport and scattering. As we will see shortly, these two interpretations are
closely related when derivatives are at play. .

(3) Finally, the last step entails differentiating the rendering algorithm in reverse mode to obtain dyx = J;(X) - &y
In the following, we will only focus on this part, since it requires new methods specific to differentiable
rendering and thus represents the main source of difficulty.

Differentiation of numerical algorithms is commonly performed out using tools for automatic differentiation
(AD), which Section 5.2 will discuss in more detail. In particular, forward and reverse mode are standard choices
within a large design space supported by modern AD tools. However, simply applying reverse-mode AD to an
entire rendering algorithm is unlikely to yield satisfactory results due to the vast amount of arithmetic with
incoherent control flow performed by physics-based rendering techniques.

Reverse-mode AD hinges on the ability to replay the execution of a program in reverse, which requires
maintenance of some kind of data structure (computation graph, queue, etc.) enabling this reversal. For non-trivial
rendering tasks involving global inter-reflection, this data structure becomes staggeringly large, exceeding the
available system memory by many orders of magnitude. Simple scenes rendered at low resolutions and sample
counts can fit, though the memory traffic to maintain this data structure is often a severe performance bottleneck
even in such cases.

This section presents the high-level ideas underlying radiative backpropagation (RBP) [31], which is an alter-
native approach to differentiable rendering that addresses this limitation. Its main insight is that reverse-mode
differentiation of a rendering algorithm has a physical interpretation where “derivative radiation” is “emitted” by
sensors, “scattered” by the scene, and eventually “received” by objects with differentiable parameters. In this
section, we will derive this analogy in a simplified setting.

Radiative backpropagation solves this modified light transport problem to fully decouple steps 1 and 3 of
the previous list, removing the need for an intermediate data structure for program reversal. This enables
differentiable simulation of complex scenes (e.g. long-running simulations involving many parameters) with
greatly improved performance: speedups of up to a factor of 1000x were observed by Nimier-David et al. in a
comparison to reverse-mode AD.

3.4 Primal equations

To keep the discussion short, we will focus on the core idea without worrying about discontinuities, moving
cameras, and participating media—the resulting method will thus compute shading and illumination-related
derivatives only. For completeness, we briefly recapitulate the three equations that fully define the original
(non-differentiated) light transport problem: the first is the measurement equation, which expresses the value of
pixel measurements I via a ray-space integral involving the pixel’s importance function W and the incident
radiance L; [41]:

L= [i) Litpw) o i
A Js?
Such ray-space product integrals can also be interpreted as a type of inner product, simplifying the notation:
= (W, Li). (46)

Next, the transport equation relates incident and outgoing radiance using the ray tracing function r(p, @), which
returns the nearest surface visible along the ray (p, w):

Li(p,) = Lo (r(p,), ~w). (47)

20

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

Finally, the rendering equation goes in the opposite direction and relates outgoing to incident radiance via the
surface’s emission and BSDF:

Lo(p, @) = Le(p, ®) +/52Li(p, &) f;(p,w,) dw'™*. (48)

Scattering and transport both can be shown to be linear operators (i.e. an infinite-dimensional generalization of a
matrix) [3, 41], hence the above two equations are often abbreviated as
Li =KrLo, Lo = Le+KsLi,

where Kt and Ks and encode (47) and (48), respectively. Substituting both operators and solving for L, yields
the solution operator K, which can be expressed in terms of a Neumann series expansion.

L, =L, +KsKrtL,

~— ——
= 7(R

= (1= KKr) ' Le =) (KsKr) Le,
i=0

where [is the identity. Substituting these relations into the measurement equation (46) transforms it into
I = (Wi, Li)
= <Wk: (](TL0>
= (Wi, KrKrLe)-
Veach also showed that Ks, Kr, and KrKx are all self-adjoint linear operators (in the sense of functional analysis)

when the scene satisfies elementary physical constraints—in particular, energy-conserving and reciprocal BSDFs.
Self-adjoint operators K have the property that (K v1,v3) = (v1, K v2), which implies that

I = (Wi, Kt KrLe). = (KTKeWe, Le).

This equation is the foundation of algorithms such as bidirectional path tracing: it states that instead of transporting
radiance to the sensor, we can also go the other way and transport importance W to the light sources and
perform the ray-space product integral there. The main appeal of this equivalence is that it exposes alternative
sampling strategies that often achieve a lower amount of variance compared to standard path tracing.

3.5 Differential equations

We now turn again to differentiable rendering: by differentiating the left and right-hand side of the measurement,
transport, and rendering equations, we obtain a simple differential theory similar to what was previously
discussed in Section 3.1 and 3.2. In contrast to these sections, our focus will be on obtaining a formulation
enabling reverse-mode differentiation.

To start, a differential measurement of pixel k involves a ray-space inner product involving differential incident
radiance dxL; and importance Wy (where we have assumed a static sensor and the short-hand notation J refers
to a gradient with respect to all scene parameters).

oyl = / / Wi (p. @) dxLi (p. @) dao* dp. (49)
AJS?

We shall think of differential radiance as simply another type of radiance that can be emitted, scattered, and
received by sensors. Differentiating the transport equation yields no surprises: differential radiance is transported
in the same manner as normal radiance:

9xLi(p, @) = dxLo (r(p, w), —@). (50)

21

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

The derivative of the rendering equation is interesting:

OxLo(p, @) = dxL(p, w) + / [Li(p, @) f5(p, w, ")+ Li(p, ®) o f; (p, w, ®")] dew’t51)
S———— s2
Term 1 Term 2 Term 3

The above can be interpreted as another kind of energy balance equation. In particular,
e Term 1. Differential radiance is “emitted” by light sources with differentiable parameters.
e Term 2. Differential radiance incident on a surface “scatters” just like normal radiance (according to the BSDF).

e Term 3. Surfaces with differentiable parameters convert ordinary radiance into differentiable radiance. Terms
1 and 3 together constitute the two causes of “differential emission”.

Based on this observation, we separate terms 1 and 3 into a new differential emission term

Q(x 0) = dxLe(p.) + / Li(p. @) 3 fs (pr 0, ') dao™,
SZ

enabling (51) to be stated as a standard rendering equation involving Q:
dxLo = Q + KsoxL;.

Note the boldface term Q: this is a vector-valued equation specifying a separate light transport problem per
differentiable parameter. Another important difference of Q compared to an ordinary emission term is that it can
take on negative values. Other than that, this interpretation involves the same equations and operators, making
it possible to directly write down the solution in terms of the standard solution operator Kg.

0xLo = Q + KsKroxLo, = KrQ. (52)

This process generalizes to more complex settings (differentiable participating media and geometry), in which
case Q contains additional terms. Let’s now see how all of this is useful.

3.6 Putting things together
Recall our goal of evaluating J} 6, efficiently as part of step (3) on page 20. We also saw in the visualizations

on page 19 how each column of the Jacobian records a “gradient image” with respect to a scene parameter x;.
Similarly, each row (or column of the transpose) holds derivatives of a single pixel measurement I, . . ., I,, with
respect to all scene parameters x:

J]Z = [oxlo. xIn]. (53)
The matrix-vector multiplication _]]Tﬁy then yields

n
J} 6y = Z 6y,k Ixlk
k=1

where 6y,k is the k-th pixel of §y. Next, we expand oI using the differential measurement equation (49) and regroup:
-1.J;

where we have defined the emitted adjoint radiance A.(p, ®). The reason for this naming convention is that the
original rendering records radiance values, and A, encodes how this radiance should change to improve the
objective function.

Z Sy kWi (p, w)l dxLi(p, ®) dw* dp,
k=1

=Ac(p.w)

22

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

Just like importance, we also shall think of adjoint radiance A, as an emitted quantity—for instance, in the
case of a pinhole camera, it can be interpreted as a textured “spot light” that projects the adjoint rendering into
the scene. With these simplifications, the desired gradient turns into simply another inner product on ray space:

J]Tfay = (Ae, OxLi)
which can be expressed directly in terms of the emission Q via the solution operator (52)
= (Ae, K1KRQ).

At this point, we refer back to Section 3.4, whose end highlights the self-adjointness of K1Kgr. Once more, we
can exploit the reciprocal nature of the physics of light to propagate differential radiation “from the other end”,
i.e., starting with adjoint radiance at the sensor, and scattering and transporting it towards scene positions p with
differentiable parameters (i.e. nonzero Q(p, -)):

J78y = (KrKrAe, Q). (54)

The impact of this change is profound and goes far beyond simple variance improvements as was the case for
bidirectional path tracing. This is due to the dimension of the involved quantities: A, associates an intensity value
with rays passing through the sensor’s aperture, and solving the associated transport problem (i.e. K1KrA,) is
just like rendering an ordinary scene (i.e. “easy”).

In contrast, Q is a vector-valued function with millions to billions of entries—one for each differentiable scene
parameter. Evaluating KtKrQ would entail the solution of that many separate transport problems, which is
clearly impractical.

4 PSEUDOCODE AND DISCUSSION

A simple path tracing-style implementation based on these insights has the following structure:

def rbp(p, omega, adjoint_radiance):
1. Find intersection with the closest surface

p' = ray_intersect(p, omega)

2. Accumulate scene parameter gradients
grad += Q(p, -omega) * adjoint_radiance

3. Sample the surface's BSDF
omega', weight = sample_bsdf(p', -omega)

4. Recurse
rbp(p', omega', adjoint_radiance * weight)

This algorithm would be invoked with directions (p, w) sampled from the sensor’s importance function (e.g. uni-
form in image space for orthographic or pinhole camera models), and the third argument is initialized with the
corresponding value from the adjoint rendering &,. Alternatively, one could also directly importance sample the
pixels of &, proportional to their value as an additional variance reduction strategy.

Step 2 is a critical component, which evaluates the differential emission Q, weights the result by the adjoint
radiance propagated along the current sub-path, and accumulates the product into a global gradient vector grad. A
property of Q with significant performance implications is its sparsity: at a given surface location p, it will normally
only depend on a few parameters including shading model parameters or nearby texels influencing the appearance
at p. In practice, this step will therefore perform highly localized updates to components instead of modifying

23

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

(V)

Fig. 11. Silhouette edges are the main cause of the discontinuities in rendering. Given a viewpoint v and an edge associated
with two faces, the edge is a silhouette if for any point p on it, the vector p — v is facing towards different directions with

respect to the two normals, that is, sign ((p -, nf)) # sign ({p — v, np)).

the high-dimensional vector grad directly. We note that this section omitted several other performance-critical
aspects of radiative backpropagation to keep the discussion self-contained and refer to the original paper [31] for
further details.

The function Q contains an integral that requires a Monte Carlo sampling strategy— in practice, the sampled
direction from step 3 can be re-used here, and direct illumination strategies (optionally with Multiple Importance
Sampling) are also of use to further reduce variance. Q, including this sampling step, can be derived by hand,
though this tedious when the scene contains advanced shading models and emitters. AD systems based on static
or dynamic (JIT-based) program transformation are likely preferable in practice. Please see Section 5.2 for a
thorough overview of AD techniques.

Although the high-level structure of the radiative backpropagation superficially resembles path tracing, a
major difference becomes apparent at the implementation level: physics-based rendering algorithms are typically
dominated by gather operations that perform read-only memory accesses to scene data, while a comparably
small number of write operations targets pixels in the output image. In radiative backpropagation, everything is
reversed: the method reads from an image and is dominated by scatter operations that update gradients associated
with different parts of the scene.

Radiative Backpropagation resembles the adjoint sensitivity method [36] from the area of optimal control. Here,
an ordinary differential equation is integrated up to a certain time in the primal phase. The adjoint phase then
solves the same equation once more backwards in time to propagate sensitivities with respect to an optimization
objective to parameters of the model. The methods are similar mainly in spirit, while the details vary considerably:
the adjoint sensitivity method is an approach for ordinary differential equations with a reversible time dimension,
while rendering typically involves steady-state simulations (i.e. lacking a natural time dimension) involving
integral- and integro-differential equations.

4.1 Path-Space Differentiable Rendering
TBD.

5 PHYSICS-BASED DIFFERENTIABLE RENDERING IMPLEMENTATION

5.1 Monte Carlo Estimators

24

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

sampled

light source
edge segment

A
>

4 silhouette

regions
-V
-

sample

blocker ’V

.
’
’

’
P connect
-,

(@) (b)

Fig. 12. Zhang et al. [44] proposed an alternative edge sampling algorithm by sampling a path segment from an edge directly.
Given an edge, such as an edge associated with the blocker in (a), they sample a segment by randomly selecting a point and
a direction, and connect the segments to light sources and cameras. To efficiently select a direction from the selected edge,
we can use the fact that only a few set of directions will see the edge as a silhouette edge (the green region in b).

5.1.1 Differentiable Path Tracing with Edge Sampling. As mentioned in the previous sections, we can discretize
the boundary integral by sampling points on triangle edges and evaluate the rendering contribution at the two
sides of the edge. A naive approach is to collect all the edges on the meshes, uniformly select one, and then
uniformly select a point on the edge. This works for simple scenes such as the one in Figure 2 but generates large
variance for more complex scenes. We want to select the edges and points in a smarter way. We will discuss
boundaries integral for the surfaces directly visible to the camera first, then we will discuss boundaries for shadow
and global illumination.

One of the key observation to speedup the sampling of edges is to notice that, if our shading is smooth over
the mesh, the only edges that can be the boundaries are the silhouette edges (Fig. 11). For the edges associated
with two faces, we classify them as non-silhouette if the normals of the two faces face towards the same sides,
when comparing to the vector connecting between an arbitrary point on the edge p and the viewpoint v. That is,
if the two associated faces have normals ny and n;, the edge is a silhouette edge if and only if

sign ((p —v,nys)) # sign ({p — v, np)) . (55)

Edges that associate with only one face is always a silhouette edge, and edges associate with three or more faces
can be converted into multiple edges with two faces. The majority of the edges of a mesh with respect to a
viewpoint are not silhouettes, as the number of silhouettes is roughly at the complexity of VN with N being the
number of edges [27].

For directly visible surfaces, given a set of edges of a mesh and the camera position, we can classify them into
silhouette and non-silhouette edges, and then project all the silhouette edges to the screen. The classification and
projection can be done at a precomputation pass before rendering. During rendering, we then randomly pick
one edge with probability proportional to their length in the screen space, and uniformly pick one point on the
edge to evaluate the contribution at the two sides (Eq. 16). This is fast and does not require any sophisticated
data structures. To further improve the edge selection for scenes with high depth complexity, we can potentially
incorporate more advanced occlusion culling algorithms to skip the edges [11, 12]. Finally, this can also be
modified to work with non-pinhole projective cameras: we can compute a bounding box for the aperture of the

25

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

camera, and conservatively classify the edges as silhouette as long as one viewpoint in the bounding box v can
view the edge as a silhouette.

For the secondary visibility such as shadow, mirror reflection, and global illumination, determining silhouettes
for our shading points becomes more involved. In contrast to the directly visible surfaces case, now the viewpoint
v is our shading point and can be anywhere in the scene. Sampling an edge in this case becomes a problem similar
to the many-lights sampling problem [34, 43]. In many-lights sampling, given a shading point and a set of light
sources, we want to sample the light sources to compute the lighting at the shading point. In contrast, now given
a shading point and a set of geometric edges, we want to sample the edges to compute the boundary integral. In
the many-lights sampling literature, a common way (but not the only way) to sample the light sources is to build
a tree data structure to select important light sources while traversing the tree: for each node in the tree, we can
collect some summary statistics of the light sources, such as their total emission power, spatial bounding box,
ranges of their orientations, etc, and use that to determine the importance of the tree node. We can use the same
strategy for sampling edges as well, while rejecting nodes containing only non-silhouettes given a shading point.
Li et al. [23] proposed to detect the silhouette in the Hough space [33] and we refer to Li’s thesis for the details
regarding this approach.

Li’s edge sampling approach [23, 24], while being reasonably efficient for directly visible surfaces, is not
extremely efficient for secondary visibility when the scenes complexity is high. An alternative proposed by Zhang
et al. [44] is to sample a path segment from an edge, and connect that path segment to cameras and light sources
(Fig. 12). When selecting the directions for the path segment, we can make sure the edge is always a silhouette
edge by sampling the directions where all points on that directions will recognize the edge as a silhouette (Fig. 12b).
Zhang et al. further improve this by selecting the edge using a hash-grid where the importance of each grid is
estimated using photon mapping [19]. This approach simplifies the edge selection process and thus makes it
significantly more efficient, since it does not need to select an edge for each shading point. See their paper for
more details.

Selecting an edge efficiently for solving the boundary integral is still an unsovled issue. Zhang et al. [44]’s
approach, while being shown to be efficient for a variety of scenes, still left some cases unhandled. For example, it
is difficult to connect the edge segment to the light sources and cameras when there are highly-specular surfaces,
such as mirror or glass, between the segment’s endpoints and the target. This connection problem resembles
the notorious Specular-Diffuse-Specular light path sampling problem in forward rendering [41]. More future
research is required to solve the full differentiable rendering equation efficiently.

5.1.2 Reparameterized Differentiable Path Tracing. One potential concern regarding edge sampling strategies
for differentiable rendering is the complexity of finding contributing silhouette edges in an arbitrary integrand.
Currently used strategies tend to find high-contribution edge segments with an insufficient density, which leads
to gradients with high variance. This issue grows in severity as the geometric complexity of objects in the scene
increases.

Interestingly, explicit sampling of discontinuities can be avoided by applying carefully chosen changes of
variables that remove the dependence of discontinuities on scene parameters. The resulting integrands of course
still contain discontinuities, but they are static in the re-parameterized integral and hence no longer prevent
differentiation under the integral sign. This section discusses an alternative way of differentiating edges
by performing a suitable change of variables in each integral that is simple to compute using ordinary
ray tracing operations.

5.1.3 Differentiable Volume Path Tracing.

26

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

5.2 Automatic Differentiation for Rendering

A substantial amount of the course has been focused on the discontinuities of the rendering integrand, and how
to correctly take them into account. However, most differentiable rendering systems will also need to compute
the interior integrand. For the interior integrands, the discretization commute with the differentiation, so we can
apply existing technique of automatic differentiation [15] to the rendering programs to compute the derivatives.

Widely used deep learning frameworks, such as PyTorch [35] and TensorFlow [1] provide a convenient interface
to array-based computation on GPUs with built-in automatic differentiation. These frameworks are designed for
linear algebra or neural networks, whose computation graphs typically consist of a few hundred arithmetically
intensive operations like matrix-vector multiplications or convolutions. On the flipside, computation graphs
produced by rendering algorithms tend to be highly unstructured and extremely large, containing millions of
operations with very low arithmetic intensity (e.g. additions). Implementing a rendering pipeline inside a deep
learning framework will be extremely inefficient since data are repeated stored to and read back from the memory
buffers. Therefore, we need new automatic differentiation compilers for efficient differentiable rendering.

In this section, we will review how automatic differentiation works, so that the readers can potentially build
their own compilers for differentiating their programs, or manually apply the automatic differentiation rules
to transform their programs. Most of the contents below in the subsection are adapted from Chapter 2 of Li’s
thesis [23]. Griewank [15] provide a good introductory text to automatic differentiation. Villard and Monagan’s
work on Maple’s automatic differentiation compiler [42] is a well written example for how to implement a
compiler for automatic differentiating imperative programs.

Given a computer program containing control flow, loops, and/or recursion, with some real number inputs and
outputs, our goal is to compute the derivatives between the outputs and the inputs. In particular, in differentiable
rendering we are especially interested in the gradients, that is, the derivative of a scalar output with respect to
the inputs.

5.2.1 Finite differences and symbolic derivatives. Before discussing automatic differentiation algorithms, it is
useful to review other ways of generating derivatives, and compare them to automatic differentiation.

A common approximation for derivatives are finite differences, sometimes also called numerical derivatives.
Given a function f(x) and an input x, we approximate the derivative by perturbing x by a small amount h:

df(x) _ flx+h) - f(x)

dx h (>6)
df(x) _f(x+h)—f(x-h)
dx 2h ' G7)

The problem with this approximation is two-fold. First, the optimal choice of the step size h in a computer system
is problem dependent. If the step size is too small, the rounding error of the floating point representation becomes
too large. On the other hand, if the step size is too large, the result becomes a poor approximation to the true
derivative. Second, the method is inefficient for multivariate functions. For a function with 100 variables and a
scalar output, computing the full gradient vector requires at least 101 evaluations of the original function.

Another alternative is to treat the content of the function f as a sequence of mathematical operations, and
symbolically differentiate the function. Indeed, most of the rules for differentiation are mechanical, and we can
apply the rules to generate f’(x). However, in our case, f(x) is usually an algorithm, and symbolic differentiation
does not scale well with the number of symbols. Consider the following code:

Using the symbolic differentiation tools from mathematical software such as Mathematica [17] would result in
the following expression:

X
e X
€ X

€
df(x) — ex+eeee +e"’ee +eeee +eeee +eeex+eex+ex. (58)

dx

27

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

function f(x):
result = x
for i = 1 to 8:
result = exp(result)
return result

Fig. 13. A code example that iteratively computes a nested exponential for demonstrating the difference between symbolic
differentiation and automatic differentiation.

The size of derivative expression will become intractable when the size of the loop grows much larger. Using
forward-mode automatic differentiation, which will be introduced later, we can generate the following code for
computing derivatives:

function d_f(x):
result = x
d_result = 1
for i = 1 to 8:
result = exp(result)
d_result = d_result * result
return d_result

The code above outputs the exact same values as the symbolic derivative (Equation 58), but is significantly
more efficient (8 v.s. 37 exponentials). This is due to automatic differentiation’s better use of the intermediate
values and the careful factorization of common subexpressions.

5.2.2 Algorithms for generating derivatives. We start from programs with only function calls and elementary
operations such as addition and multiplication. In particular, we do not allow recursive or circular function calls.
Later, we generalize the idea to handle control flow such as loops and branches, and handle recursion. Throughout
the chapter, we assume all function calls are side-effect free. To the author’s knowledge, there are no known
automatic differentiation algorithms for transforming arbitrary functions with side effects.

The key to automatic differentiation is the chain rule. Consider the following code with input x and output z:

y = f(x)
z = g(y)

Assume we already know the derivative functions % and dg;i—(yy), and we are interested in the derivative of

the output z with respect to input x. We can compute the derivative by applying the chain rule:

dydx dfdx(x)

dzdy = dgdy(y)
dzdx = dzdy * dydx

We can recursively apply the rule to generate derivative functions, until the function is an elementary function
for which we know the analytical derivatives, such as addition, multiplication, sin(), or exp().

A useful mental model for automatic differentiation is the computational graph. It can be used for representing
dependencies between variables. The nodes of the graph are the variables and the edges are the derivatives
between the adjacent vertices. In the case above the graph is linear:

d dz

28

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

Computing derivatives from a computational graph involves traversal of the graph, and gathering of different
paths that connect inputs and outputs.

In practice, most functions are multivariate, and often times we want to have multiple derivatives such as for
the gradient vector. In this case, different derivatives may have common paths in the computational graph that can
be factored out, which can greatly impact efficiency. Consider the following code example and its computational
graph:

f(x0, x1)

i = g(y) @—'

wl, wl = h(z)

Fig. 14. Code example and computational graph with two inputs x@, x1 and two outputs w@, wl

There are four derivatives between the two outputs and two inputs. We can obtain them by traversing the four
corresponding paths in the computational graph:

P e Pe e o
6(@@’d@@@@i@@’@i@

(b) Iwy awl (d) owy

(a) 3x0 ox1 8xg ox1

For example, in (a), the derivative of we with respect to x0 is the product of the three red edges:

owy owg 9z dy

—_— = (59)
09X 0z dy 9x

and in (b), the derivative of wo with respect to x1 is
owp _ 9wy 9z dY (60)

ox; 9z dy ax;

We can observe that some of the derivatives share common subpaths in the computational graph. For example

the two derivatives above 2% Fro and ™ share the same subpath y, z, we. We can therefore factor this subpath
out and premultiply 2 a_y = aa‘:" gz for the two derivatives. In a larger computational graph, this factorization can

have enormous impact on the performance of the derivative code, even affecting the time complexity in terms of
the number of inputs or outputs.

Different automatic differentiation algorithms find common factors in the computational graph in different ways.
In the most general case, finding a factorization that results in minimal operations is NP-hard [30]. Fortunately,
in many common cases, such as factorization for the gradient vector, there are efficient solutions.

If the input is a scalar variable, no matter how many variables there are in the output, forward-mode automatic
differentiation generates derivative code that has the same time complexity as the original algorithm. On the other
hand, if the output is a scalar variable, no matter how many input variables there are, reverse-mode automatic

29

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

differentiation generates derivative code that has the same time complexity as the original algorithm. The latter
case is particularly interesting, since it means that we can compute the gradient with the same time complexity
(the “cheap gradient principle”), which can be useful for various optimization and sampling algorithms.

5.2.3 Forward-mode differentiation. We start with the simplest algorithm, usually called forward-mode automatic
differentiation, and sometimes also called dual number. Forward-mode traverses the computational graph from
the inputs to outputs, computing derivatives of the intermediate nodes with respect to all input variables along
the way. Forward-mode is efficient when the input dimension is low and the output dimension is high, since for
each node in the computational graph, we need to compute the derivatives with respect to every single input
variable.

We will describe forward-mode using the previous example in Figure 14. Starting from the inputs, the goal is
to propagate the derivatives with respect to the inputs using the chain rule. To handle function calls, for every
function f(x) referenced by the output variables, we generate a derivative function df (x, dx), where dx is the
derivative of x with respect to the input variables.

We start from the inputs x0, x1 and generate g—;‘; =1and 3—2 = 1. We use a 2D vector dx0dx to represent the
derivatives of x0 with respect to x0 and x1.

dxedx = {1, 0} @

dxldx = {0, 1}

y = f(x0, x1) ° e

z = g(y)

wo, wl = h(z) e @

We then obtain the derivatives for y with respect to the inputs. We assume we already applied forward-mode
automatic differentiation for f, so we have a derivative function df (x0, dx0dx, x1, dxldx).

dxedx = {1, o} @ @
dxldx = {0, 1}
y = f(x0, x1)

dydx = df(x0, dx0dx, ° e

x1, dx1ldx)

z = g(y)
wl, wl = h(z)

Finally, we propagate the derivatives from z to the outputs wo, wi.

dxodx = {1, 0}

dx1dx = {0, 1} @
y = f(x0, x1)
dydx = df(x0, dxodx,
x1, dx1ldx) 0 e
z = g(y)

dzdx = dg(y, dydx)
wo, wl = h(z)
dw@dx, dwldx = dh(z, dzdx)

The time complexity of the code generated by forward-mode automatic differentiation is O(d) times the time
complexity of the original algorithm, where d is the number of input variables. It is efficient for functions with
few input variables.

However, for many applications of derivatives, including differentiable rendering, we need to differentiate
functions with thousands or even millions of input variables. Using forward-mode for this would be infeasible, as

30

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

we need to compute the derivatives with respect to all input variables for every output in the computational
graph. Fortunately, there is another algorithm called reverse-mode automatic differentiation that can generate
derivative code that has the same time complexity as the original algorithm when there is only a single output,
regardless of the number of input variables.

5.2.4 Reverse-mode differentiation. Reverse-mode propagates the derivatives from outputs to inputs, unlike
forward-mode, which propagates the derivatives from inputs to outputs. For each node in the computational
graph, we compute the derivatives of all outputs with respect to the variable at that node. Therefore reverse-
mode is much more efficient when the input dimension is large and the output dimension is low. Remarkably,
reverse-mode can compute gradient in the same time complexity as the original algorithm! However,
reverse-mode is also more complicated to implement since it needs to run the original algorithm backward to
propagate the derivatives.

We again use the same previous example in Figure 14 to illustrate how reverse-mode works. Similar to forward-
mode, we need to handle function calls. For every function y = f(x) referenced by the output variables, we
generate a derivative function df (x, dy), where dy is a vector of derivatives of the final output with respect
to the function’s output y (in contrast, in forward-mode, the derivative functions take the input derivatives as
arguments). Handling control flow and recursion in reverse-mode is more complicated. We discuss them later.

We start from the outputs wo, wl using % = 1and g—x = 1. We use a 2D vector dwdwo to represent the
derivatives of wo, w1 with respect to we.

y = f(x0, x1)
z = g(y)
wo, wl = h(z)

dwdw0 {1, o}
dwdwl = {0, 1}

%ﬁ

Next, we propagate the derivatives to variable z on which the two outputs depend. We assume we already
applied reverse-mode to the function h and have dh(z, dwdw®, dwdwl).

y = f(x0, x1)
z = g(y)
wo, wl = h(z)

dwdwo = {1, 0}
dwdwl = {0, 1}
dwdz = dh(z, dwdw®, dwdwl)

Similarly, we propagate to y from z.

y = f(x0, x1)

z = g(y)
wo, wl = h(z)

dwdwo = {1, 0}

dwdwl = {0, 1}

dwdz = dh(z, dwdw®, dwdwl)
dwdy = dg(y, dwdz)

AP f

)

Finally we obtain the derivatives of the outputs w with respect to the two inputs.

31

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

y = f(x0, x1)

o, S (=) (v
wo, wl = h(z)

dwdwo = {1, 0} @

dwdwl = {0, 1}

dwdz = dh(z, dwdw®, dwdwl)
dwdy = dg(y, dwdz)
dwx0, dwxl = df(x0, x1, dwdy)

A major difference between reverse-mode and forward-mode that makes the implementation of reverse-mode
much more complicated, is that we can only start the differentiation after the final output is computed. This
makes it impossible to interleave the derivative code with the original code like in forward-mode. This issue has
the most impact when differentiating programs with control flows or recursions.

5.2.5 Beyond forward and reverse modes. As we have discussed, forward-mode generates less operations when
the number of inputs is small, while reverse-mode generates less operations when the number of outputs is small.

In general, we can think of derivative computation as a pathfinding problem on the computational graph: We
want to find all the paths that connect between inputs and outputs. Many of the paths share common subpaths
and it is more computationally efficient to factor out the common subpaths. Forward-mode and reverse-mode are
two different greedy approaches that factor out the common subpaths either from the input node or output node.

Sometimes we do not just want to achieve the least number of operations. On modern hardware architectures,
reading from and writing to the memory outside of caches is significantly more time-consuming than the
arithmetic computation. Sometimes we wish to compute more to trade-offs with less memory traffic. Therefore, it
is sometimes worth exploring approaches between the spectrum of forward- and reverse- modes. Mitsuba 2 [32]
took this approach and applied a greedy vertex elimination algorithm [14].

5.2.6 Automatic differentiation as program transformation. Typically the implementation of automatic differentia-
tion systems can be categorized as a point in a spectrum, depending on how much is done at compile-time. At one
end of the spectrum, the tracing approach, or sometimes called the taping approach, re-compiles the derivatives
whenever we evaluate the function. At the other end of the spectrum, the source transformation approach does
as much at compile-time as possible by compiling the derivative code only once. The tracing approach has the
benefit of simpler implementation, and is easier to incorporate into existing code, while the source transformation
approach has better performance, but usually can only handle a subset of a general-purpose language and is
much more difficult to implement.

A common misconception is that the tracing approach (PyTorch being a notable example) results in more
user-friendly frontend, while the source transformation, or static compilation approach (TensorFlow 1.0 being
a popular example) results in a messy meta-programming interface. In fact, the frontend of the compiler does
not dictate how a program is compiled. A language can have the exact same syntax/frontend as PyTorch, and
statically compile to highly-optimized code (this is roughly what TorchScript does). On the other hand, a language
can also have the exact same syntax/frontend as TensorFlow, and being interpreted directly in a Read-Eval-Print
Loop (REPL) environment (the eager-mode of TensorFlow 1.0 does this).

5.2.7 Control flows and recursions. Handling control flow and recursion in forward-mode is trivial. We do not
need to modify the flow at all. Since forward-mode propagates from the inputs, for each statement, we can
compute its derivative immediately.

In reverse-mode, however, control flow and recursion introduce challenges, since we need to revert the flow.
Consider the iterative exponential example from Figure 13. To apply reverse-mode, we need to revert the for

32

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

loop. We observe an issue here: we need the intermediate exp (result) values for the derivatives. To resolve this,
we will need to record the intermediate values during the first pass of the loop:

function d_f(x):
result = x
results = []
for i = 1 to 8:
results.push(result)
result = exp(result)

d_result = 1
for i = 8 to 1:

// one-—based indexing

d_result = d_result x exp(results[i])
return d_result

The general strategy for transforming loops in reverse-mode is to push intermediate variables into a stack for
each loop [42], then pop the items during the reverse loop. Nested loops can be handled in the same way. For
efficient code generation, dependency analysis is often required to push only variables that will be used later to
the stack (e.g. [40]).

The same strategy of storing intermediate variables in a stack also works for loop continuations, early exits,
and conditioned while loops. We can use the size of the stack as the termination criteria. For example, we modify
the previous example to a while loop and highlight the derivative code in red:

function d_f(x):
result = x
results = []
while result > 0.1 and result < 10:
results.push(result)
result = exp(result)

d_result =1
for i = len(results) to 1:

d_result = d_result x exp(results[i])
return d_result

In general, given a loop, we store all the intermediate variables generated in the loop inside a stack. We then
replay the stack from the end to the beginning, and traverse the computational graph backward for the statements
inside the loops. For if conditions we can do the same transformation. We will store which condition the forward
pass satisfied in the stack, along with the intermediate variables of that particular branch.

Recursion is equally or even more troublesome compared to conditions loops for reverse-mode. Consider the
following tail recursion that represents the same function:

function f(x):
if x <= 0.1 or x >= 10:
return x
result = f(exp(x))
return result

It is tempting to use the reverse-mode rules we developed previously to differentiate the function like the
following:

33

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

function d_f(x, d_result):
if x <= 0.1 or x >= 10:
return 1
result = f(exp(x))
return d_f(result, d_result) * exp(x)

However, a close inspection reveals that the generated derivative function d_f has higher time complexity
compared to the original function (O(N?) v.s. O(N)), since every time we call d_f we will recompute f (exp(x)),
resulting in redundant computation.

A solution to this, similar to the case of loops, is to use the technique of memoization. We can cache the result
of recursive function calls in a stack, and traverse the recursion tree in reverse by traversing the stack:

function d_f(x, d_result):
if x <= 0.1 or x >= 10:
return 1
results = []
result = f(exp(x), results)

d_result =1
for i = len(results) to 1:

d_result = d_result x exp(results[i])
return d_result

This also works in the case where f recursively calls itself several times. A possible implementation is to use a
tree instead of a stack to store the intermediate results.

The transformations above reveal an issue with the reverse-mode approach. While for scalar output, reverse-
mode is efficient in time complexity, it is not efficient in memory complexity, since the memory usage depends on
the number of instructions, or the length of the loops. A classical optimization to reduce memory usage is called
“checkpointing”. The key idea is to only push to, or to checkpoint, the intermediate variable stack sporadically,
and recompute the loop from the closest checkpoint every time. Griewank [13] showed that by checkpointing
only O (log (N)) times for a loop with length O(N), we can achieve memory complexity of O (log (N)), and time
complexity of O (N log (N)) for reverse-mode.

5.2.8 Differentiating SIMD-based rendering programs. Differentiating a general parallel program, while preserving
the parallelism is not trivial due to the potential race condition. Fortunately, in rendering, most of the parallelism
are independent. Most rendering programs can be written inside a parallel for loop, launching threads that do not
communicate with each other. In this case, the reverse-mode differentiation can be done with the same strategy
above by first executing the parallel for loop and storing the intermediate variables in a stack of arrays, then
launch the same parallel for loop again with the statements inside transformed with reverse-mode automatic
differentiation. Importantly, any read from external arrays in the original parallel for loop needs to be transformed
to an atomic scatter write to avoid race conditions.

Enoki [18], the core of Mitsuba 2, is a just-in-time compiler that specializes at compiling and differentiating
parallel programs with independent threads. Enoki takes a C++ or Python frontend of a SIMD program, and
automatically generate vectorized CPU or GPU code and the corresponding reverse-mode transformed code.

6 PHYSICS-BASED DIFFERENTIABLE RENDERING APPLICATIONS
TBD.

34

Physics-Based Differentiable Rendering: A Comprehensive Introduction SIGGRAPH ’20 Courses, August 17, 2020, Virtual Event, USA

REFERENCES

(1]

(2]
(3]
(4]
(5]

]

—
[
fe]

=

[20]
[21]

[22]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y.Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, L. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

James Arvo. 1994. The Irradiance Jacobian for partially occluded polyhedral sources. In SIGGRAPH ’94. 343-350.

James Arvo. 1995. Analytic methods for simulated light transport. Ph.D. Dissertation. Yale University.

Edwin Catmull. 1978. A Hidden-Surface Algorithm with Anti-Aliasing. Comput. Graph. (Proc. SSGGRAPH) 12, 3 (1978), 6-11.
Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Courier Corporation.

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing. Comput. Graph. (Proc. SSIGGRAPH) 18, 3 (1984),
137-145.

Franklin C Crow. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11 (1977), 799-805.

Tomas Davidovi¢, Thomas Engelhardt, Iliyan Georgiev, Philipp Slusallek, and Carsten Dachsbacher. 2012. 3D rasterization: a bridge
between rasterization and ray casting. In Graphics Interface. 201-208.

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand pose estimation from monocular video. IEEE Trans.
Pattern Anal. Mach. Intell. 33, 9 (2011), 1793-1805.

Harley Flanders. 1973. Differentiation under the integral sign. The American Mathematical Monthly 80, 6 (1973), 615-627.

Ned Greene and Michael Kass. 1994. Error-bounded antialiased rendering of complex environments. In SIGGRAPH. 59-66.

Ned Greene, Michael Kass, and Gavin Miller. 1993. Hierarchical Z-buffer visibility. In SSGGRAPH. ACM, 231-238.

Andreas Griewank. 1992. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. 1, 1
(1992), 35-54.

Andreas Griewank and Shawn Reese. 1991. On the Calculation of Jacobian Matrices by the Markowitz Rule. In Automatic Differentiation
of Algorithms: Theory, Implementation, and Application. SIAM, 126-135.

Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105.
SIAM.

Warren Hunt, Michael Mara, and Alex Nankervis. 2018. Hierarchical Visibility for Virtual Reality. ACM Comput. Graph. Interact. Tech.
(Proc. 13D) 1, 1 (2018), 1-18.

Wolfram Research, Inc. [n.d.]. Mathematica, Version 11.3. Champaign, IL, 2018.

Wenzel Jakob. 2019. Enoki: structured vectorization and differentiation on modern processor architectures. https://github.com/mitsuba-
renderer/enoki.

Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Rendering Techniques (Proc. EGWR). Springer,
326-335.

James T. Kajiya. 1986. The Rendering Equation. In SIGGRAPH °86. 143-150.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D mesh renderer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3907-3916.

L. Gary Leal. 2007. Advanced Transport Phenomena: fluid mechanics and convective transport processes. Vol. 7. Cambridge University
Press.

Tzu-Mao Li. 2019. Differentiable visual computing. MIT PhD Dissertation.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo ray tracing through edge sampling.
ACM Trans. Graph. 37, 6 (2018), 222:1-222:11.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning.
International Conference on Computer Vision (2019).

Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable renderer. In European Conference on Computer
Vision. Springer, 154-169.

Morgan McGuire. 2004. Observations on silhouette sizes. J. Graph. Tools 9, 1 (2004), 1-12.

Morgan McGuire and Louis Bavoil. 2013. Weighted blended order-independent transparency. Journal of Computer Graphics Techniques
2,4 (2013).

Don P Mitchell and Arun N Netravali. 1988. Reconstruction filters in computer-graphics. Comput. Graph. (Proc. SSGGRAPH) 22, 4 (1988),
221-228.

Uwe Naumann. 2008. Optimal Jacobian accumulation is NP-complete. Mathematical Programming 112, 2 (2008), 427-441.

Merlin Nimier-David, Sébastien Speierer, Benoit Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for
Lightning-Fast Differentiable Rendering. Transactions on Graphics (Proceedings of SSIGGRAPH) 39, 4 (July 2020). https://doi.org/10.1145/
3386569.3392406

35

https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/3386569.3392406

SIGGRAPH 20 Courses, August 17, 2020, Virtual Event, USA Zhao, Jakob, and Li

(32]

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A retargetable forward and inverse renderer.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019), 1-17.

Matt Olson and Hao Zhang. 2006. Silhouette extraction in Hough space. Comput. Graph. Forum (Proc. Eurographics) 25, 3 (2006), 273-282.

Eric Paquette, Pierre Poulin, and George Drettakis. 1998. A Light Hierarchy for Fast Rendering of Scenes with Many Lights. Comput.
Graph. Forum (Proc. Eurographics) (1998), 63-74.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

Lev Semenovich Pontryagin. 1962. Mathematical theory of optimal processes. CRC Press.

Thomas Porter and Tom Duff. 1984. Compositing digital images. (1984), 253-259.

Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis of Lighting, Shading, and Shadows. ACM Trans.
Graph. 26,1 (2007), 2:1-2:21.

Pedro V. Sander, Hugues Hoppe, John Snyder, and Steven J. Gortler. 2001. Discontinuity edge overdraw. In Symposium on Interactive 3D
Graphics and Games. ACM, 167-174.

Michelle Mills Strout and Paul Hovland. 2006. Linearity analysis for automatic differentiation. In International Conference on Computational
Science. Springer, 574-581.

Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University. Advisor(s) Guibas,
Leonidas J.

Dominique Villard and Michael B Monagan. 1999. ADrien: an implementation of automatic differentiation in Maple. In International
Symposium on Symbolic and Algebraic Computation. 221-228.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A Scalable
Approach to lllumination. ACM Trans. Graph. (Proc. SSGGRAPH) 24, 3 (2005), 1098-1107.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Trans.
Graph. (Proc. SSGGRAPH) 39, 6 (2020), 143:1-143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shaung Zhao. 2019. A Differential Theory of
Radiative Transfer. ACM Trans. Graph. 38, 6 (2019), 227:1-227:16.

36

	1 Introduction
	1.1 Scope

	2 Motivation and Mathematical Preliminaries
	2.1 Rendering as an Integration Problem
	2.2 Computing Gradients by Differentiating the Integrals.
	2.3 Distributional Derivatives and Dirac Delta
	2.4 Leibniz's Rule for Differentiating 1D Integrals
	2.5 Reynolds Transport Theorem for Differentiating Multi-dimensional Integrals
	2.6 Relation to Rasterization-based Differentiable Renderers

	3 Physics-Based Differentiable Rendering Theory
	3.1 Differentiable Rendering of Surfaces
	3.2 Differentiable Rendering of Participating Media
	3.3 Radiative Backpropagation
	3.4 Primal equations
	3.5 Differential equations
	3.6 Putting things together

	4 Pseudocode and discussion
	4.1 Path-Space Differentiable Rendering

	5 Physics-Based Differentiable Rendering Implementation
	5.1 Monte Carlo Estimators
	5.2 Automatic Differentiation for Rendering

	6 Physics-Based Differentiable Rendering Applications
	References

