### Physically Based Animation: Mass-Spring Systems

#### CS114, Spring 2016

#### **Shuang Zhao**

Computer Science Department University of California, Irvine

### **Previous Lectures**

- WebGL
- Physics of light
- Radiometry
- Rendering equation
- Path tracing

# **Today's Lecture**

- Physically-based animation
- Particle systems
  - Equations of motion
  - Numerical integration (Euler's method)
- Mass-spring systems

# **Particle Systems**

#### Physically Based Animation: Mass-Spring Systems

# **Type of Dynamics**

Point (particle)

Rigid body



• Deformable body (e.g., elastic materials, fluids, smoke)



## **Particle Systems**

- Collections of small particles maintaining certain states:
  - E.g., position, velocity, etc.
- Particle motion affected by (internal/external) forces
- Simulating particle motion = solving ODEs
- To model:
  - Sand, flame, fluid, **cloth**, etc.

## **Particle Motion**

- Mass *m*, position *x*, velocity *v*
- Equations of motion: at time t,

Velocity: 
$$\frac{d}{dt} \boldsymbol{x}(t) = \dot{\boldsymbol{x}}(t) = \boldsymbol{v}(t)$$
  
Acceleration:  $\frac{d}{dt} \boldsymbol{v}(t) = \ddot{\boldsymbol{x}}(t) = \frac{1}{m} \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{v}, t)$  Newton's Second Law

- Simulating a particle's motion:
  - Given **x**(0), **v**(0);
  - Need to find  $\mathbf{x}(t)$ ,  $\mathbf{v}(t)$  for t > 0.



# **Solving Initial Value Problem**

- Analytical solutions do NOT exist in general
- We find approximated solutions numerically
  - Euler's method
  - Mid-point method
  - etc.

### **Initial Value Problem: Example**



Shuang Zhao

### **Euler's Method**

$$\dot{x}(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \implies x(t + \Delta t) \approx x(t) + \Delta t \cdot \dot{x}(t)$$

To solve x(t), one can pick small  $\Delta t > 0$  and set

$$x(\Delta t) = x(0) + \Delta t \cdot \dot{x}(0)$$
$$x(2\Delta t) = x(\Delta t) + \Delta t \cdot \dot{x}(\Delta t)$$
$$x(3\Delta t) = x(2\Delta t) + \Delta t \cdot \dot{x}(2\Delta t)$$

. . .

### **Initial Value Problem: Example**

Problem:

$$\begin{cases} \dot{x}(t) = 2t\\ x(0) = 0 \end{cases}$$

Analytical solution:

 $x(t) = t^2$ 

#### **Euler's method:**

$$x(\Delta t) = x(0) + \Delta t \cdot \dot{x}(0) = 0$$
  

$$x(2\Delta t) = x(\Delta t) + \Delta t \cdot \dot{x}(\Delta t) = 2(\Delta t)^2$$
  

$$x(3\Delta t) = x(2\Delta t) + \Delta t \cdot \dot{x}(2\Delta t) = 6(\Delta t)^2$$

. . .

### **Initial Value Problem: Example**

Problem: 
$$\begin{cases} \dot{x}(t) = 2t \\ x(0) = 0 \end{cases}$$

Smaller  $\Delta t$  = Better accuracy, lower performance



Shuang Zhao

### **Euler's Method for 2<sup>nd</sup> Order ODEs**

$$\dot{\boldsymbol{x}}(t + \Delta t) = \dot{\boldsymbol{x}}(t) + \Delta t \cdot \ddot{\boldsymbol{x}}(t)$$
$$\boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t) + \Delta t \cdot \dot{\boldsymbol{x}}(t)$$

Known

#### **Particle motion problem:**

$$\ddot{\boldsymbol{x}}(t) = \frac{1}{m} \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{v}, t)$$

### **Particle Motion: Example**



## **Particle Motion: Example**

#### **Problem:**

#### **Euler's method:**

$$\begin{cases} \ddot{\boldsymbol{x}}(t) = \begin{pmatrix} 0\\ -g \end{pmatrix} \\ \boldsymbol{x}(0) = \begin{pmatrix} 0\\ 0 \end{pmatrix} \\ \dot{\boldsymbol{x}}(0) = \begin{pmatrix} 1\\ 0 \end{pmatrix} \end{cases}$$

$$\dot{\boldsymbol{x}}(\Delta t) = \dot{\boldsymbol{x}}(0) + \Delta t \cdot \ddot{\boldsymbol{x}}(0) = \begin{pmatrix} 1\\\Delta t \cdot g \end{pmatrix}$$

$$\boldsymbol{x}(\Delta t) = \boldsymbol{x}(0) + \Delta t \cdot \dot{\boldsymbol{x}}(0) = \begin{pmatrix} \Delta t\\0 \end{pmatrix}$$

$$\dot{\boldsymbol{x}}(2\Delta t) = \dot{\boldsymbol{x}}(\Delta t) + \Delta t \cdot \ddot{\boldsymbol{x}}(\Delta t) = \begin{pmatrix} 1\\\Delta 2t \cdot g \end{pmatrix}$$

$$\boldsymbol{x}(2\Delta t) = \boldsymbol{x}(\Delta t) + \Delta t \cdot \dot{\boldsymbol{x}}(\Delta t) = \begin{pmatrix} 2\Delta t\\(\Delta t)^2 g \end{pmatrix}$$

. . . . . . .

## **Particle Motion: Example**

#### **Problem:**

**Euler's method:** 



# **Mass-Spring Systems**

Physically Based Animation: Mass-Spring Systems

# Mass-Spring System

• A collection of particles connected with springs



- Forces to consider
  - Spring force
  - Gravity
  - Spatial fields
  - Damping force



### **Forces: Spring Force**

$$p_i lacksquare{}{}$$

Rest length: L<sub>0</sub>

$$egin{aligned} m{F}_i &= K(L_0 - \|m{p}_i - m{p}_j\|) rac{m{p}_i - m{p}_j}{\|m{p}_i - m{p}_j\|} \ m{\mathcal{K}}: ext{ stiffness} \end{aligned}$$



## **Forces: Gravity**

- Simple gravity:
  - Depends only on particle mass m

$$\mathbf{F}_{\text{gravity}} = \begin{pmatrix} 0 \\ 0 \\ -mg \end{pmatrix}$$
(g = 9.8 on earth)

### **Forces: Spatial Fields**

- Force on a particle only depends on its location
  - E.g., wind
- Can change over time

### **Forces: Damping**

$$F_{
m damp} = -c_d \, oldsymbol{v}$$

$$F_{\text{damp}} \longleftarrow v$$

- Force on a particle
  - Only depends on its velocity
  - Opposes motion
- Removes energy, so system can settle
- Small amount of damping can stabilize solver

# **Animating Mass-Spring System**

- Input:
  - For each particle i:
    - Mass  $m_i$ , initial position  $\mathbf{x}_i(0)$ , initial velocity  $\mathbf{v}_i(0)$
  - For each spring connecting particles *i* and *j*:
    - Stiffness K<sub>i,j</sub>
- Output:
  - Trajectory of each particle  $\mathbf{x}_{i}(t)$ , t > 0
  - Normally represented with positions at discrete time-steps: *x*<sub>i</sub>(Δ*t*), *x*<sub>i</sub>(2Δ*t*), *x*<sub>i</sub>(3Δ*t*), ...

# **Animating Mass-Spring System**

Pseudo-code

```
t = 0
while t < t_{max}:
      for each particle i:
            compute accumulated force F_i at this particle
            # Fuler's method
            a_i = F_i/m_i
                                                              # acceleration
            \mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + (\Delta t)^* \mathbf{a}_i \qquad \text{# velocity}
            \mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + (\Delta t)^* \mathbf{v}_i(t) + \text{position}
      t = t + \Lambda t
```

## **Computing Accumulated Force**

# Given particle i at time t

- $F_i = [0, 0, -m_i^*g] \# \text{gravity}$
- $F_i = F_i c_d^* v_i(t)$  # damping

for each particle j connected to i by a Spring:  $e = P_i - P_j$ 

#  $K_{i,j}$ : Stiffness,  $L_{i,j}$ : rest length  $F_{spring} = K_{i,j}*[L_{i,j} - length(e)]*e/length(e)$ 

 $F_i = F_i + F_{spring}$ 

# Mass-Spring System for Cloth Simulation

Physically Based Animation: Mass-Spring Systems

# **Cloth Simulation**

- Studied for decades, still an active area
- Elastic sheet model





[Provot 1995]

[Baraff et al. 2003]

Yarn-based model



#### [Kaldor et al. 2008]

## **Mass-Spring System for Cloth**



• Cloth = a "web" of particles and springs

# **Mass-Spring System for Cloth**

• Consider a rectangular cloth with *m×n* particles



# **Mass-Spring System for Cloth**

- Type of Forces
  - Spring
  - Gravity
  - Damping
  - Contact
  - ...

### Discretization

- What happens if we discretize our cloth more or less finely?
- Do we get the same behavior?
- Usually NOT! It takes a lot of effort to design discretization-independent schemes.



