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1 Introduction

While Monte Carlo integration and multiple importance sampling (MIS) are widely used in practice,
we use extended versions of these techniques: our MIS weighting is based on approximate (not exact)
pdfs, and our weight and function evaluation are both stochastic (i.e. they consume additional
random numbers, and are equal to the true weight and function value only in expectation). For
this reason, we review standard Monte Carlo and MIS estimators, and show that our extensions
still lead to unbiased results.

2 Monte Carlo estimator

Let f(x) be an integrable function on domain D, and let X be a random variable on domain D
with probability distribution p(x), such that p(x) > 0 whenever f(x) 6= 0. An integral

I =

∫
D
f(x) dx

can be approximated by the unbiased estimator

Xf =
f(X)

p(X)
.

It is easy to see that Xf is an unbiased estimate of I:

EX [Xf ] =

∫
D
p(x)

f(x)

p(x)
dx =

∫
D
f(x) dx = I.

Note, the cancellation of p(x) is always possible due to the assumption that p(x) > 0 for all x where
f(x) is non-zero.
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3 Combining estimators through MIS

Multiple importance sampling (MIS) combines two different sampling strategies (random variables)
X1 and X2 on D, with pdfs p1(x) and p2(x), to compute the integral I more robustly. This is
achieved by choosing weighting functions w1(x) and w2(x) such that w1(x) + w2(x) = 1 for all
x ∈ D.

Furthermore, we shall require that if p1(x) = 0 or p2(x) = 0, the corresponding f(x) = 0.

The integral I is thus split into I1 and I2:

I = I1 + I2 =

∫
D
w1(x)f(x) dx +

∫
D
w2(x)f(x) dx.

The following are unbiased estimators for I1 and I2:

X1
f =

w1(X)f(X)

p1(X)
X2

f =
w2(X)f(X)

p2(X)
.

This can be seen as follows:

EX [X1
f ] =

∫
D
p1(x)

w1(x)f(x)

p1(x)
dx =

∫
D
w1(x)f(x) dx = I1,

and the same argument works for I2. Again, the reason the cancellation of p1(x) works is that either
it is non-zero, or f(x) = 0, due to the assumption above.

Also note that we made no assumptions on the weights other than that they sum to 1. In particular,
there is no requirement that the weights be derived from exact pdfs, and we are free to base them
on approximate pdfs, among other choices.

4 Stochastic function evaluation

Now suppose that the function evaluation is itself stochastic, i.e. it is an unbiased estimator f(x,R)
of the true value of f(x), that uses a uniform random number R on the interval [0, 1) during its
evaluation. The argument can be easily extended for the case of consuming multiple uniform random
numbers. We use a single random number in the proof for brevity.

Because the function estimator is unbiased, we have ER[f(x,R)] =
∫ 1
0 f(x, r) dr = f(x) for all x.

Therefore, our full estimator becomes:

Xf =
f(X,R)

p(X)
.

We can see that this estimator is still unbiased, by computing its expected value over X and R:

EX,R[Xf ] =

∫
D

∫ 1

0
p(x)

f(x, r)

p(x)
dr dx =

∫
D
p(x)

∫ 1
0 f(x, r) dr

p(x)
dx =

∫
D
p(x)

f(x)

p(x)
dx = I

2



5 Stochastic weight and function evaluation

When both the weight evaluation and the function evaluation in an MIS estimator are stochastic,
the resulting estimator is still unbiased, provided that the random numbers used by the weight
and the function are independent (which enables us to rewrite the joint integral over both random
choices into separate integrals). Specifically, consider an unbiased estimator w1(x,R1) of the true
value of w1(x), and an unbiased estimator f(x,R2) of the true value of f(x), based on uniform
random numbers R1 and R2 on the interval [0, 1). (again, this can be easily extended for the case
of consuming multiple uniform random numbers.) The estimator for integral I1 will become:

X1
f =

w1(X,R1)f(X,R2)

p1(X)

We can see that this estimator is unbiased, by computing its expected value over X, R1 and R2:

EX,R1,R2 [X1
f ] =

∫
D

∫ 1

0

∫ 1

0
p1(x)

w1(x, r1)f(x, r2)

p1(x)
dr1 dr2 dx =

∫
D
p1(x)

∫ 1
0 w1(x, r1) dr1 ·

∫ 1
0 f(x, r2) dr2

p1(x)
dx =

∫
D
p1(x)

w1(x)f(x)

p1(x)
dx = I1.

The same argument can be used for X2
f .

6 Discussion

Application to direct illumination integral. In our application, the integral of interest I is
normally the direct illumination estimate at a shading point. The function f(x) involves the product
of the BSDF and illumination values; this is integrated over the unit sphere (or unit hemisphere
for BRDFs with no transmission), which is the domain D. The random variables X1 and X2 are
outgoing directions ωo chosen by light sampling and BSDF sampling, respectively. For the case of
light sampling, we need to stochastically evaluate the MIS weight and BSDF value for the chosen
ωo; these evaluations will consume vectors of uniform random numbers R1 and R2, respectively.

No approximation of pdfs in estimator denominators. While in the main paper we use ap-
proximate stochastic pdfs to define the weights, we never approximate the pdfs in the denominators
of our estimators. In our case, the accurate values of these pdfs are already baked into the f/p
estimates returned by the position-free Monte Carlo simulations.

Sum of stochastic weights. The sum of the stochastic approximations to weights w1 and w2 will
generally not be exactly 1, but this is not required. We simply require that

1. the expected values of the weights sum to 1, so that the integral I separates correctly into I1
and I2,

2. X1
f and X2

f are unbiased estimators for I1 and I2, respectively.

The combination of these properties implies an unbiased estimate for I.
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